

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Magistrale in Conservazione e Divulgazione Naturalistica

STRATEGIE DI CONSERVAZIONE DEL MOSCARDINO (*Muscardinus avellanarius L*.) IN PAESAGGI FRAMMENTATI DELL' ITALIA CENTRALE

Relatori: Prof. Carlo Rondinini Dott. Alessio Mortelliti Laureando: Daniele Fipaldini Matricola n. 696198

INDICE

1 INTRODUZIONE	.4
1.1 La frammentazione	.4
1.2 Distinzione dei processi	.4
1.3 Effetti sulla biodiversità	.7
1.4 Degradazione dell'habitat	.9
1.5 Connettività del paesaggio	10
1.6 Popolazioni spazialmente strutturate	11
1.7 Lo studio dei processi di perdita e frammentazione dell'habitat a livello di popolazione	13
1.8 Modelli di popolazione spazialmente espliciti (SEPM)	14
1.8.1 Utilità dei modelli di popolazione spazialmente espliciti	17
1.8.2 Limiti dell'utilizzo dei SEPM	18
1.9 Il moscardino come specie modello per sviluppare strategie di conservazione ottimali	in
paesaggi frammentati	20
1.9.1 Finalità del progetto	21
1.9.2 Obiettivi della tesi	21
2 BIOLOGIA DEL MOSCARDINO	23
2.1 Sistematica	23
2.2 Corologia	23
2.3 Morfologia	24
2.4 Riproduzione	25
2.5 Ecologia	25
2.6 Legislazione e rapporti con l'uomo	27
3 MATERIALI E METODI	28
3.1 Area di studio	28
3.2 Regione Lazio	28
3.2.1 Inquadramento geografico	28
3.2.2 Lineamenti geologici e geomorfologici	30
3.2.3 Lineamenti idrografici	32
3.2.4 Lineamenti vegetazionali	32
3.2.5 Uso del suolo	35
3.3 Il territorio della Sabina	36
3.3.1 Caratteri Geomorfologici	36
3.3.2 Caratteri Vegetazionali e faunistici	37
3.4 Il paesaggio di Viterbo	39
3.4.1 Caratteri Geomorfologici	39
3.4.2 Caratteri Vegetazionali e Faunistici	39
3.5 La Riserva Naturale Selva Del Lamone	41

3.5.1 Caratteri geomorfologici	41
3.5.2 Caratteri vegetazionali	41
3.5.3 Caratteri faunistici	42
3.6 Disegno sperimentale	43
3.6.1 Fase 1: raccolta parametri demografici	43
3.6.2 Fase 2: elaborazione del modello di probabilità di presenza	46
3.6.3 Fase 3: parametrizzazione del modello di popolazione spazialmente esplicito.	
3.6.4 Fase 4: analisi di vitalità delle popolazioni con scenari di non cambiamento	e scenari di
cambiamento dell'habitat	53
4 RISULTATI	56
4.1 Modelli di regressione	59
4.2 Parametrizzazione del modello di popolazione spazialmente esplicito	61
4.3 Simulazioni con scenari di non cambiamento dell'habitat	63
4.4 Simulazioni con scenari di cambiamento dell'habitat	73
4.4.1 Paesaggio del Lamone	74
4.4.2 Paesaggio di Viterbo	78
4.4.3 Paesaggio della Sabina	83
5 DISCUSSIONE	
5.1 Considerazioni sulle caratteristiche demografiche delle popolazioni campionate	
5.2 Attendibilità del protocollo utilizzato per la parametrizzazione dei modelli di p	opolazione
spazialmente espliciti	
5.3 Interpretazione dei risultati dei modelli	93
5.4 Implicazioni per la conservazione	95
6 CONCLUSIONI	97
BIBLIOGRAFIA	
APPENDICI	

1 INTRODUZIONE

1.1 La frammentazione

La frammentazione degli habitat è considerata una delle principali cause di perdita della biodiversità (Fahrig 2003; Foley *et al.* 2005). Per questo motivo risulta essere uno dei temi più affrontati e dibattuti nel campo della biologia della conservazione (Fazey *et al.* 2005). Nonostante questo notevole sforzo di ricerca i progressi, nelle misure di conservazione adottate, avvengono troppo lentamente rispetto agli attuali tassi di estinzione di specie animali e vegetali causati dal fenomeno (Lindenmayer & Fischer 2007). Questo ritardo è dovuto principalmente alla complessità dei processi implicati, che producono una moltitudine di effetti, sia diretti sia indiretti, che si manifestano su diverse scale spaziali e livelli di organizzazione biologica (Lindenmayer & Fischer 2007; Henle *et al.* 2004). La mancanza di una definizione precisa e univoca del termine frammentazione ha contribuito ulteriormente al ritardo. In letteratura una tale situazione è stata indicata con il termine "panchreston", ovvero, "una spiegazione di un problema talmente complesso, usata in maniera così generale e in grado di adattarsi a così tante situazioni, da non poter essere di una qualche utilità pratica" (Bunnell 1999).

La frammentazione degli habitat è un fenomeno di origine antropica causato dalla continua crescita della popolazione umana e dalla relativa domanda di nuove terre da utilizzare principalmente per: l'agricoltura, l'allevamento, il prelievo di risorse naturali, scopi industriali e la crescente urbanizzazione con costruzione delle relative infrastrutture. Anche i paesaggi che hanno da sempre conosciuto la presenza dell'uomo, nelle quali si è instaurato un equilibrio tra i modelli di vita antropici e gli ecosistemi naturali (Turner 2005), hanno subito negli ultimi decenni drastiche trasformazioni che hanno modificato e continuano a modificare le complesse dinamiche che regolano i rapporti all'interno della biodiversità.

1.2 Distinzione dei processi

Per frammentazione dell'habitat in realtà si intendono almeno quattro processi distinti:

- **perdita di habitat**, un processo deterministico durante il quale si ha una diminuzione progressiva della disponibilità di risorse e condizioni necessarie alla presenza e persistenza di una specie (Fig. 1.1; Lindenmayer & Fischer 2007);
- frammentazione per se, il processo di suddivisione di un grande habitat in frammenti (patch) sempre più piccoli e più isolati tra di loro (Fig. 1.1; Fahrig 2003; McGarigal & Cushman 2002);
- **degradazione dell'habitat**, il graduale deterioramento della qualità dell'habitat (vedi par. 1.4; Mortelliti *et al*. 2010a);
- **interruzione della connettività**, ovvero, il grado di permeabilità del paesaggio ai movimenti degli individui tra i frammenti (vedi par. 1.5; Taylor *et al*. 1993).

Per una sintesi delle principali definizione adottate nel testo si veda l'appendice A.

Fig. 1.1 La perdita di habitat e la frammentazione per se sono due processi distinti. Il primo consiste in una riduzione dell'habitat disponibile, il secondo in una suddivisione dell'habitat in patch sempre più piccoli e isolati (Fahrig, 2003).

La perdita di habitat e la frammentazione (intesa come suddivisione dell'habitat) sono due processi molto difficili da studiare separatamente in quanto nella maggior parte dei casi si verificano contemporaneamente nei paesaggi. Infatti per suddividere un'unica area in più frammenti, deve essere inevitabilmente rimossa una certa quantità di habitat (Fahrig 1997). Tuttavia questa può essere rimossa da un paesaggio in diversi modi, portando a differenti configurazioni spaziali.

Lo stretto legame che caratterizza i due processi di perdita e frammentazione ha portato molti ricercatori ad identificare e misurare il grado di frammentazione semplicemente in funzione dell'ammontare di habitat residuo (Fahrig 2003). D'altronde due paesaggi possono presentare la stessa quantità totale di habitat e differenziarsi nel modo in cui questo si trovi distribuito: in uno l'habitat può essere distribuito in maniera più o meno continua in pochi grandi patch, nell'altro in maniera frammentata in numerosi patch più piccoli. Questi due paesaggi pertanto si differenzieranno non in base all'ammontare totale di habitat, bensì al suo pattern di distribuzione spaziale (Fig. 1.2; McGarigal & McComb 1995).

Fig. 1.2 Diversi gradi di rimozione dell'habitat da un paesaggio, con effetti diversi sulla configurazione spaziale dei frammenti: nella parte superiore della figura sono indicati paesaggi soggetti solo a perdita di habitat, nella parte inferiore paesaggi soggetti a "frammentazione". Modificato da McGarigal & McComb (1995).

Sono state proposte molte misure quantitative per lo studio della frammentazione basate sui quattro effetti principali che la frammentazione determina sul pattern di distribuzione (McGarigal *et al.* 2002; Fahrig 2003): 1) riduzione della quantità complessiva di habitat; 2) aumento del numero totale di patch; 3) decremento nelle dimensioni dei singoli frammenti; 4) aumento dell'isolamento dei frammenti.

Il problema principale nell'uso di queste misure quantitative, per districare gli effetti della perdita di habitat da quelli della frammentazione, è che queste sono spesso altamente correlate tra loro rendendo difficile la separazione tra i due processi (Fahrig 2003; Lindenmayer & Fischer 2007). Un approccio spesso utilizzato per controllare le correlazioni prevede il controllo statistico di queste metriche (McGarihal & McComb 1995; Villard *et al.* 1999; Koper *et al.* 2007). Il miglior metodo, tuttavia, risulta essere quello sperimentale: scegliere unità di campionamento (paesaggi) nei quali la quantità di habitat rimane costante mentre varia la configurazione spaziale dei patch (Bennett *et al.* 2006; Radford & Bennett 2007).

Una volta che si riescono ad isolare gli effetti, della perdita di habitat da quelli della frammentazione *per se*, emerge l'importanza della distinzione dei due processi. Infatti, benché i due fenomeni siano strettamente associati, gli effetti che producono sulla biodiversità sono diversi e quindi diverse sono le azioni di gestione e conservazione che si devono prendere per contrastarli (Lindenmayer & Fischer 2007; Mortelliti *et al.* 2010b, 2011).

Se la maggior minaccia per una specie è rappresentata dalla perdita di habitat la strategia di conservazione più adatta sarà quella di aumentare la quantità totale di habitat in un paesaggio e/o quella di preservarne i frammenti rimanenti (McCarthy & Lindenmayer 1999; Lindenmayer & Fischer 2006). Se, al contrario, la maggior minaccia per una specie è rappresentata dalla suddivisione dell'habitat, e dal conseguente isolamento tra i patch, la strategia di conservazione migliore sarà quella di aumentare la connettività all'interno del paesaggio, attraverso la creazione e/o la gestione di corridoi specie-specifici (es. siepi e stepping stones). I corridoi permettono agli individui di spostarsi da un frammento ad un altro favorendo le capacità dispersive della specie (Bennett 1999).

Quest'ultimo tipo di interventi viene comunemente adottato, ad esempio, nei programmi di conservazione inglesi sul moscardino (vedi in particolare il progetto Hedgerows for Dormice di People's Trust for Endangered Species; PTES 2009, 2011). Per l'alta specializzazione alla vita arboricola, il moscardino risulta essere una specie altamente sensibile ai processi di perdita e frammentazione dell'habitat e rappresenta una buona specie modello per studiare i due processi e prendere delle misure di conservazione per contrastarli, come testimoniano i numerosi studi dedicatigli in paesaggi frammentati (Bright et al. 1994; Bright & Morris 1996; Capizzi et al. 2002; Mortelliti et al. 2011). In Inghilterra viene considerata una specie bandiera, ovverosia una specie con importanza strategica perché capace di catturare l'attenzione del grande pubblico. Simbolo dei principali programmi di conservazione inglesi (Morris 2003), il moscardino è incorporato in numerosi Biodiversity Action Plan nazionali e locali, come il Dormouse Recovery Plan e il National Dormouse Monitoring Programme (gestiti da PTES e Natural England). Inoltre le azioni di conservazione che si adottano per questa specie, come la gestione dell'habitat e l'implementazione ed il mantenimento di una rete di corridoi, hanno ripercussioni positive per molte altre specie, sia invertebrate che vertebrate (Bright et al. 2006). Il moscardino, in particolare, ha contribuito in Inghilterra a focalizzare l'attenzione sull'importanza delle siepi come strumento di conservazione comune a molte specie in paesaggi frammentati, in quanto forniscono rifugio e formano importanti vie di dispersione per molti altri taxa (Morris 2003).

1.3 Effetti sulla biodiversità

Gli effetti della perdita e della frammentazione si ripercuotono potenzialmente su tutti i gruppi tassonomici, inclusi uccelli e mammiferi (Andrén 1994; Recher 1999), rettili (Gibbons *et al.* 2000), anfibi (Stuart *et al.* 2004), invertebrati (Didham *et al.* 1996) e piante (Hobbs & Yates 2003).

La maggior parte degli effetti negativi sono dovuti al processo di perdita di habitat (Lindenmayer & Fischer 2006; Trzcinski *et al.* 1999). La perdita di habitat è un processo deterministico (Lindenmayer & Fischer 2007) che agisce direttamente su tutti i livelli di organizzazione biologica: da una riduzione della ricchezza genetica tra gli individui (Gibbs 2001) ad una diminuzione dell'abbondanza all'interno di una popolazione (Hanski *et al.* 1996; Gibbs 1998; Hargis *et al.* 1999), da un decremento delle popolazioni di una determinata specie (Andrén 1994) ad una semplificazione della diversità specifica (Gurd *et al.* 2001; Schmiegelow & Monkkonen 2002; Steffan-Dewenter *et al.* 2002) ed ecosistemica di una data regione.

Il processo di perdita di habitat determina pesanti ripercussioni negative sulla vitalità delle popolazioni animali. Si è ad esempio dimostrato come il processo porti ad una diminuzione del tasso di accrescimento delle popolazioni (Bascompte *et al.* 2002; Donovan & Flather 2002) o ad una riduzione del successo riproduttivo (Kurki *et al.* 2000) e a quello di foraggiamento (Mahan & Yahner 1999) di una specie. Sono stati dimostrati anche effetti a livello di comunità nelll'alterazione delle interazioni tra le specie (Taylor & Merriam 1995). Casi specifici di questo tipo riguardano effetti sui tassi di predazione in un sistema predatore-preda (Bergin *et al.* 2000; Hartley & Hunter 1998) e sulla lunghezza delle catene trofiche (Komonen *et al.* 2000) e sul numero di animali specialisti di grandi dimensioni presenti in una comunità (Gibbs & Stanton 2001).

Gli effetti del processo della frammentazione *per se*, quando vengono opportunamente isolati, si sono rilevati essere generalmente più deboli rispetto a quelli prodotti dalla perdita di habitat (Fahrig 2003; Radford & Bennett 2007). Gli studi sul moscardino hanno dimostrato, ad esempio, che la maggior minaccia per la specie è rappresentata dalla perdita di habitat e che gli effetti della frammentazione *per se* sono molto minori in paesaggi frammentati dell'Italia centrale (Mortelliti *et al.* 2011).

Come già sottolineato, perché si possa parlare di effetto della frammentazione (intesa come suddivisione dell'habitat), i cambiamenti registrati nella biodiversità non devono essere imputabili alla sola riduzione dell'ammontare di habitat totale presente nel paesaggio, ma siano conseguenza di cambiamenti nei pattern di distribuzione spaziale dei patch che compongono il paesaggio.

La progressiva riduzione delle dimensioni dei patch, che abbiamo visto verificarsi durante il processo di frammentazione, sosterrà popolazioni locali sempre più ridotte (Zanette *et al.* 2000) in quanto frammenti di habitat sempre più piccoli, inevitabilmente, offriranno sempre minori quantità di spazio, di risorse trofiche e di strutture fisiche necessarie per la sopravvivenza della specie. Quando le popolazioni si riducono queste saranno maggiormente soggette a fenomeni d'estinzione locale determinati da eventi stocastici di carattere demografico, ambientale e genetico (Lindenmayer & Fischer 2006). In funzione della scala alla quale le varie specie percepiscono il paesaggio, e di conseguenza la scala a cui sperimentano la frammentazione, i patch rimanenti potrebbero rappresentare poi un habitat per intere popolazioni o per popolazioni locali di una metapopolazione o ancora parte di un *home range* individuale; alla fine le dimensioni dei patch potrebbero diventare talmente piccole da non sostenere più neanche un singolo territorio individuale (Fahrig 2003).

La suddivisione dell'habitat porta all'instaurarsi di distanze sempre maggiori tra i patch che compongono il paesaggio lasciandoli isolati in mezzo ad una matrice di non-habitat. Per questo la configurazione spaziale dei patch avrà effetti profondi sul loro utilizzo da parte degli individui. E' stato dimostrato, ad esempio, che una particolare configurazione può compromettere le capacità, da parte di una specie, di utilizzare risorse spazialmente isolate (Lindenmayer & Fischer 2006). Gli effetti dell'isolamento influenzano negativamente gli spostamenti degli individui tra i frammenti di habitat a diverse scale spaziali e temporali: dai movimenti quotidiani ai movimenti dispersivi (Wiens 1976; Thomas 1994), dai movimenti migratori (Fischer & Lindenmayer 2007) agli slittamenti degli areali in conseguenza di cambiamenti climatici. L'isolamento incide negativamente sui movimenti degli animali in funzione della loro capacità dispersiva, del tipo di locomozione specifica e di come questi interagiscono con le differenti tipologie di uso del suolo (Lindenmayer & Fischer 2006).

Un ulteriore importante effetto della frammentazione è rappresentato dal cosiddetto effetto margine. Per effetto margine si intende l'insieme delle alterazioni fisico-chimiche e biologiche che intervengono lungo le aree marginali e di contatto fra ambienti diversi. L'effetto margine induce, nei frammenti, una trasformazione della struttura vegetazionale, del microclima, della copertura del suolo che provoca effetti diretti e indiretti sulla distribuzione e abbondanza delle specie animali e vegetali (Laurance & Yensen 1991). Un frammento di habitat può essere così ulteriormente suddiviso concettualmente in un nucleo (core area) e in un'area marginale circostante (edge area). Patch più piccoli e/o con perimetri sempre più irregolari presenteranno proporzioni relative sempre maggiori di area marginale rispetto alla core area, riducendo l'effettiva estensione dell'habitat inalterato.

Si possono distinguere tre tipi di effetto margine (Murcia 1995):

- effetti abiotici, che riguardano i cambiamenti nelle condizioni chimiche-fisiche e microclimatiche dovute alla prossimità con matrici diverse, quali ad esempio cambiamenti nella radiazione solare e nel flusso di fertilizzanti (Saunders *et al.* 1991; Laurance *et al.* 2006);
- effetti biologici diretti, che comprendono, nelle popolazioni animali, cambiamenti nell'abbondanza e nella distribuzione degli individui e, nelle specie vegetali, cambiamenti nella germinabilità e sopravvivenza dei semi;
- 3) effetti biologici indiretti, rappresentati da cambiamenti nelle complesse interazioni tra le specie a seguito ad esempio dell'ingresso di specie estranee nel frammento, dell'aumento di tassi di predazione e di competizione (Andrén 1992; Chalfoun *et al.* 2002), di cambiamenti nelle modalità d'impollinazione con conseguente riduzione dei tassi d'impollinazione (Powell & Powell 1987) e di cambiamenti nella dispersione dei semi.

In un'ottica di dinamica di popolazione, inoltre, è da considerare che margini più sviluppati determinano una maggiore probabilità che un individuo lasci l'habitat ed entri nella matrice, aumentando il tasso di mortalità di una popolazione locale che porta, in definitiva, ad una riduzione del tasso riproduttivo della popolazione intera (Fahrig 2002). L'entità dell'effetto margine sulle popolazioni animali dipende da una serie di fattori quali: la tipologia ambientale del frammento e quella della matrice circostante (Sisk *et al.* 1997), la drasticità nella transizione da un habitat all'altro (Schmiegelow & Monkkonen 2002), le caratteristiche ecologiche della specie

(Wilcove *et al.* 1986) e il tipo e grado di frammentazione ed il tempo intercorso dall'inizio di questo processo (Davies *et al.* 2001).

Considerando le caratteristiche ecologiche delle singole specie, le più sensibili al processo di frammentazione saranno quelle che: necessitano di habitat maggiormente estesi, hanno basse capacità dispersive, presentano elevata specializzazione verso determinate risorse, sono caratterizzate da popolazioni con una bassa densità naturale, hanno un basso potenziale riproduttivo, dipendono da risorse distribuite in maniera sparsa (Henle *et al.* 2004; Walters *et al.* 1999; Gehring & Swihart 2003; Terborgh & Winter 1980).

In qualche caso specifico e, a seconda della sensibilità delle specie al processo di frammentazione, la suddivisione dell'habitat può determinare anche effetti positivi sulla biodiversità (Fahrig 2003; Trzcinski et al. 1999; Davies et al. 2001). Tra le specie generaliste ce ne sono diverse che traggono vantaggio dai cambiamenti che avvengono nella struttura della vegetazione e nella disponibilità di risorse trofiche nelle zone marginali dei singoli frammenti (Carlson & Hartman 2001; Kremsater & Bunnell 1999; Laurence et al. 2001). Inoltre alcune specie necessitano di più di una tipologia di habitat nel corso del loro ciclo vitale e, un paesaggio maggiormente frammentato, caratterizzato quindi da una maggiore eterogeneità ambientale, può favorire tali specie (Law & Dickman 1998; Pope et al. 2000). E' stato dimostrato anche che il processo di frammentazione può aumentare la persistenza di un sistema predatore-preda, in quanto l'esistenza di un numero maggiore di frammenti può aumentare il numero delle strutture di rifugio in cui le prede possono accrescersi e disperdersi, diminuendo il tasso totale di predazione (Huffaker 1958; Vandermeer 1973; Hastings 1977). In presenza di disturbi locali asincroni, la frammentazione, può infine favorire la stabilità di un sistema di due specie competitrici (Levin 1974; Slatkin 1974; Atkinson & Shorrocks 1981; Shmida & Ellner 1984; Chesson 1985) e di un sistema di popolazioni spazialmente strutturate (den Boer 1981; Hanski & Gilpin 1991).

1.4 Degradazione dell'habitat

La degradazione dell'habitat è quel processo che porta ad un graduale deterioramento della qualità dell'habitat, ovvero, la capacità da parte di un habitat di fornire le condizioni adeguate per la persistenza degli individui e della popolazione (Hall *et al.* 1997). La degradazione dell'habitat è un processo che si può facilmente verificare indipendentemente dalla perdita e dalla frammentazione, sebbene possa essere facilitato da questi ultimi due (Mortelliti *et al.* 2010a).

La maggior parte degli studi sulla frammentazione si sono concentrati nel districare i processi di perdita e frammentazione, mentre il ruolo che la qualità degli habitat ha nei paesaggi frammentati è stato trascurato, soprattutto a causa delle difficoltà nella scelta delle sue misure quantitative (Mortelliti *et al.* 2010a). Tuttavia ci sono sempre più studi che evidenziano il suo ruolo nel determinare i pattern di distribuzione delle specie (Thomas *et al.* 2001; Holland & Bennett 2007; Mortelliti & Boitani 2008; Mortelliti 2012 *submitted*), l'abbondanza delle popolazioni (Lloyd 2008) e le dinamiche di colonizzazione ed estinzione (Franken & Hik 2004).

Si possono adottare diverse metodologie per misurare la qualità di un patch (Mortelliti *et al.* 2010a):

• la prima consiste nel misurare i suoi effetti sui parametri demografici, come ad esempio la riproduzione, la sopravvivenza ed i tassi di crescita della popolazione;

- la seconda consiste nel misurare la struttura del patch, come "surrogato" della qualità;
- la terza consiste nel quantificare l'abbondanza delle risorse chiavi per la specie che svolgono un ruolo importante nella determinazione dei parametri demografici.

Il primo metodo è sicuramente quello più oggettivo in quanto si misurano direttamente gli effetti che ha la qualità dell'habitat sulle popolazioni animali, ma risulta il più costoso e potrebbe confondersi con gli stessi effetti, che agiscono sui parametri demografici, determinati dalla configurazione spaziale del paesaggio. Il secondo ha costi molto più contenuti, ma è quello più soggettivo in quanto non si conosce realmente il modo in cui la struttura di un patch sia correlata con l'effettiva qualità. Il terzo metodo rappresenta, invece, essere il miglior compromesso tra costi e precisione (Mortelliti *et al.* 2010a).

L'importanza nel misurare la qualità degli habitat nei paesaggi frammentati, e districare i suoi effetti da quelli di perdita e frammentazione con opportuni disegni sperimentali, può indirizzare le politiche di conservazione a prendere delle misure più efficaci di conservazione, verso particolari tipi di gestione dell'habitat (Mortelliti 2012 *submitted*).

1.5 Connettività del paesaggio

Un ulteriore effetto della frammentazione è la diminuzione della connettività del paesaggio (Fahrig 2003, Haila 2002). Per connettività si intende il grado di permeabilità (facilitazione o impedimento) del paesaggio ai movimenti degli individui tra i diversi patch di habitat (Taylor *et al.* 1993). Quando si studia la connettività è necessario considerare non solo la struttura spaziale degli elementi di connessione ma anche come questi vengono utilizzati dalle specie (Taylor *et al.* 2006); risulta quindi necessario distinguere tra:

- 1) la connettività strutturale, che prende in considerazione solo gli elementi di connessione fisica tra i patch che costituiscono il paesaggio;
- 2) la connettività funzionale, quella effettiva (o realizzata), che tiene conto della percezione delle specie, ovverosia dell'effettiva risposta degli organismi ai diversi elementi di connessione del paesaggio.

Questa distinzione risulta fondamentale se si considera che patch connessi da un punto di vista strutturale (siepi, filari di alberi, etc.) potrebbero non esserlo da un punto di vista funzionale e viceversa (With 1997). Alcune specie, ad esempio, grazie alle proprie capacità dispersive, sono in grado di attraversare la matrice di non-habitat che separa i diversi frammenti di habitat (Hinsley 2000). La connettività funzionale pone quindi l'accento sul carattere specie-specifico degli elementi del paesaggio che fungono da connessione.

Mentre la connessione strutturale risulta relativamente facile da misurare attraverso variabili che prendono in considerazione le distanze tra i frammenti ed il numero delle connessioni fisiche che collegano i patch (Tischendorf & Fahrig 2000), la connettività funzionale è molto più difficile da quantificare (Taylor *et al.* 2006).

Per questo motivo la maggior parte degli studi che misurano la connettività del paesaggio si basano su indici che quantificano solamente gli elementi di connessione fisica tra i patch, senza prendere in considerazione gli effettivi movimenti degli individui e quindi la funzionalità

connettiva del paesaggio. Esistono, però, sempre più evidenze empiriche che dimostrano come gli elementi di connessione (siepi) aumentino la ricchezza specifica in un paesaggio (Bennett *et al.* 2004) e permettano effettivi movimenti degli individui tra i pach (Davies & Pullin 2007). L'occupazione di un dato frammento di habitat idoneo dipende dal grado di connettività del paesaggio per molte specie (Bascompte & Solé 1996; Mortelliti *et al.* 2010b), così come per il moscardino (Bright & Morris 1996; Capizzi *et al.* 2002; Mortelliti *et al.* 2011).

Valutare il ruolo della connettività del paesaggio, per capire quale sia il suo effetto relativo sulla distribuzione delle specie nei paesaggi frammentati, indipendentemente dagli altri processi di perdita, frammentazione e degradazione degli habitat, risulta importante in quanto si possono prendere delle decisioni gestionali più appropriate per le specie minacciate che vivono in paesaggi frammentati (Lindenmayer & Fischer 2007). Per il moscardino è stato dimostrato, ad esempio, che incrementare la rete delle siepi in paesaggi con bassi livelli di copertura forestale (< 10%) non ha più sostanziali effetti sulla probabilità di presenza della specie (Mortelliti *et al.* 2011).

1.6 Popolazioni spazialmente strutturate

Una delle conseguenze principali della perdita di habitat e della frammentazione, insieme alla naturale eterogeneità dei paesaggi, è la strutturazione spaziale delle popolazioni. Molte specie, infatti, sono composte da un insieme di popolazioni discrete che interagiscono tra di loro in una stessa area geografica.

Esistono diverse possibili dinamiche che le popolazioni spazialmente strutturate possono presentare in paesaggi frammentati; Harrison (1991) ha proposto quattro principali tipologie (Fig. 1.3):

- **Metapopolazione classica**, un insieme di popolazioni conspecifiche che persistono in equilibrio dinamico tra estinzioni e (ri)colonizzazioni (Levin 1970);
- Popolazioni source-sink, un insieme di sottopopolazioni, in alcune delle quali (sink) avvengono estinzioni locali che non influiscono sulla persistenza regionale della popolazione perché mantenuta dalle emigrazioni provenienti dalle popolazioni sorgente (source) (Hanski & Gilpin 1991; Pulliam 1996; Pulliam 1988). Le popolazioni source presenteranno, quindi, tassi di crescita netti positivi e le popolazioni sink negativi;
- Popolazione patchy, un insieme di popolazioni distribuite in frammenti di habitat e/o in habitat variabile dal punto di vista spaziale e temporale. Gli alti tassi di dispersione tengono unite queste popolazioni in quella che si può considerare un'unica entità demografica. La probabilità di estinzione delle popolazioni locali risulta molto bassa e di conseguenza non possono essere considerate delle metapopolazioni (Bascompte *et al.* 2002);
- **Metapopolazione non all'equilibrio**, tipico di ambienti altamente frammentati in cui l'estinzione non è controbilanciata dalle ricolonizzazioni (Hanski 1998; Bolger *et al.* 1997); le estinzioni locali sono parte di un processo più ampio di declino regionale determinato da processi quali la degradazione, la frammentazione e la riduzione dell'habitat.

Fig. 1.3 Differenti tipologie di popolazioni spazialmente strutturate. (A) Metapopolazione classica. (B) Popolazioni source-sink. (C) Popolazione patchy. (D) Metapopolazione non all'equilibrio. Mentre nelle figure A, B e C le frecce rappresentano solo il movimento degli individui tra le diverse popolazioni locali, nella figura D indicano anche una diminuzione delle dimensioni delle popolazioni, per un processo di declino regionale (vedi definizione di metapopolazione non all'equilibrio).

Alcuni autori sono in disaccordo con l'utilizzo di queste categorie in quanto il mondo naturale non presenta dei confini netti tra una tipologia e l'altra (Hanski & Gaggiotti 2004). All'interno di un'area, ad esempio, una stessa specie può presentare contemporaneamente più di una dinamica di popolazione che rientri in queste categorie.

D'altronde in ecologia si è sempre più riconosciuta l'importanza delle dinamiche di non-equilibrio delle popolazioni naturali, caratterizzate, appunto, da frequenti estinzioni locali e ricolonizzazioni (Akçakaya 2002). Anche se ogni popolazione locale può esistere per solo un periodo di tempo breve, l'intera popolazione può persistere per un lungo periodo, con un pattern di scambio continuo delle occupancy delle popolazioni locali, come se i patch si "spegnessero" e "accendessero" in modo alternato. Il rischio di estinzione di una popolazione locale è determinato da fattori quali la grandezza della popolazione, i parametri demografici (ad es. il tasso di fecondità e di sopravvivenza) e la stocasticità ambientale e demografica che causa variazioni in questi parametri. Il rischio di estinzione di un'intera popolazione spazialmente strutturata dipende, invece, non solo dai fattori che influenzano il rischio di estinzione di ogni singola popolazione locale, ma anche da altri fattori che operano a livello di "metapopolazione". Questi includono il numero e configurazione spaziale dei patch di habitat che sono occupati dalle popolazioni locali, la somiglianza delle condizioni ambientali che le popolazioni sperimentano e la dispersione tra le popolazioni che può portare alla ricolonizzazione di patch localmente estinti (Akçakaya 2002). Si tratta di vere e proprie proprietà che emergono quando il nostro sistema non è più costituito dalle singole popolazioni, ma dalle popolazioni spazialmente strutturate.

E' importante sottolineare, inoltre, che molti ricercatori erroneamente identificano la maggior parte delle popolazioni spazialmente strutturate come delle metapopolazioni classiche. Ma perché si possa parlare di una vera metapopolazione è necessario che: l'habitat sia distribuito in patch discreti, le dinamiche delle popolazione locali non devono essere sincronizzate, ci siano evidenze di processi di estinzione e colonizzazione locali e ci siano evidenze di processi di dispersione tra le popolazioni locali (Hanski 1999). Per i grandi mammiferi Elmhagen & Angerbjörn (2001) hanno proposto due requisiti meno restrittivi: le popolazioni locali riproduttivamente attive devono risultare discrete e presentare diversi tassi di crescita. La maggior parte degli studi sui mammiferi utilizza la dispersione come evidenza sperimentale della presenza di una metapopolazione. Sebbene sia innegabile l'importanza del suo ruolo, da sola non può essere considerata un indicatore affidabile, ma va combinato con gli altri requisiti.

L'uso del concetto di metapopolazione, quindi, non è sempre supportato da evidenze empiriche, soprattutto nei mammiferi. A tal proposito Oliver *et al.* (2009) hanno evidenziato come solo cinque popolazioni al mondo di mammiferi, in cui si è studiata la dinamica di popolazione, rientrano nei requisiti di metapopolazione classica (tra l'altro queste popolazioni appartengono tutte a specie di piccoli mammiferi).

1.7 Lo studio dei processi di perdita e frammentazione dell'habitat a livello di popolazione

La maggior parte degli studi di frammentazione sono focalizzati sulla distribuzione delle specie, facendo inferenza sui dati di presenza/assenza. Anche se questi studi permettono di predire i pattern di distribuzione delle specie, non permettono di spiegare come le popolazioni si estinguono in paesaggi frammentati e quindi cogliere le cause ultime di estinzione delle varie popolazioni. C'è una sostanziale differenza, infatti, tra spiegare un processo e predire la probabilità che un certo evento si verifichi, ad esempio la probabilità di trovare un moscardino in un bosco di 4 ha. Una spiegazione della distribuzione delle specie in paesaggi frammentati richiede una comprensione delle relazioni di causa-effetto del pattern di distribuzione osservato (Mortelliti & Boitani *submitted*). Risultano quindi ancora pochi gli studi che abbiano raccolto le informazioni che permettano di fare veramente inferenza sui processi che determinano i pattern di distribuzione delle specie e quindi spiegare realmente il fenomeno della frammentazione (Mortelliti *et al.* 2010c).

Poiché la biologia della conservazione è una scienza di crisi c'è sempre stata una forte attenzione verso le previsioni piuttosto che verso le spiegazioni di un fenomeno (Soulé 1986). Le previsioni vengono spesso fatte con i modelli di idoneità ambientale. Questi modelli permettono di predire abbastanza bene la distribuzione di una specie in funzione di determinate variabile predittive (per esempio le dimensioni dei patch), ma i processi demografici che determinano come le specie rispondono alla frammentazione sono poco conosciuti (Holland & Bennett 2010). Questo significa che non stiamo effettivamente spiegando la distribuzione, ovvero, il nesso di causalità tra le dimensioni dei patch e la presenza della specie (Mortelliti *et al.* 2010c).

Vi sono sempre più evidenze empiriche che dimostrano che la frammentazione agisce sui parametri demografici. Holland & Bennett (2010), ad esempio, hanno dimostrato che le dimensioni dei patch influenzano molteplici aspetti della demografia delle popolazioni del *Rattus fuscipes*, come la densità, la struttura per età e l'immigrazione. Ancora Hanski & Gaggiotti (2004) hanno dimostrato che nei paesaggi frammentati le proprietà geometriche dei patch alterano i principali parametri demografici di una popolazione, come la sopravvivenza e l'emigrazione.

Rappresenta una priorità assoluta, pertanto, ampliare il campo d'indagine nelle ricerche sulla distribuzione delle specie sensibili ai processi di perdita e frammentazione dell'habitat, come il moscardino, andando ad analizzare quei parametri ecologici di fondamentale importanza, ma

finora poco considerati, quali abbondanza, sopravvivenza, rapporto sessi, fertilità, comportamento dispersivo delle specie. In questo modo si colmerà il divario tra la causa ultima (piccola dimensione dei patch) e il suo effetto sulle popolazioni (estinzione), che è ciò che ostacola una chiara spiegazione dei modelli di presenza (Mortelliti & Boitani *submitted*). Studiare i parametri demografici vuol dire capire, ad esempio, che l'estinzione locale in un patch è avvenuta per un rapporto tra i sessi altamente spaiato che ha determinato una riproduzione ridotta della popolazione locale, portandola in definitiva all'estinzione.

Si è già sottolineata l'importanza della distinzione dei vari processi che agiscono nei paesaggi frammentati. Distinguere i processi vuol dire saper isolare gli effetti che producono su una data specie e quindi poter prendere le giuste azioni di gestione e conservazione per poterli contrastare. Studi precedenti sul moscardino in paesaggi frammentati dell'Italia centrale, che utilizzano dati di presenza/assenza per fare inferenza, hanno dimostrato che la maggior minaccia per la specie è rappresentata dalla perdita di habitat, mentre il ruolo della frammentazione *per se* è risultato essere molto più ridotto (Mortelliti *et al.* 2011). Ma gli studi che si basano solamente sui dati di presenza/assenza, come abbiamo visto, dovrebbero essere interpretati con cautela in quanto potrebbero mascherare processi critici che si verificano a livello di popolazione (Holland & Bennett 2010). Da qui nasce l'esigenza di ripetere lo studio che distingua gli effetti di perdita di habitat e frammentazione *per se* a livello demografico. Nel comune interesse di perfezionare gli interventi di gestione e conservazione, sia in termini di efficacia che di costi, è importante comprendere come le specie reagiscano al processo di frammentazione. Tali scoperte avranno un più ampio impatto sulla conservazione a lungo termine delle specie in paesaggi frammentati rispetto ai soli modelli di presenza (Mortelliti *et al.* 2010c).

1.8 Modelli di popolazione spazialmente espliciti (SEPM)

I modelli di popolazione spazialmente espliciti (Spatially Explicit Population Model o SEPM) sono uno strumento fondamentale per studiare le dinamiche di popolazioni spazialmente strutturate. I SEPM sono la versione spazialmente esplicita delle analisi di vitalità delle popolazioni (Population Viability Analysis o PVA). Il termine spazialmente esplicito si riferisce al fatto che i modelli di popolazione corrono su una "mappa" reale del territorio, quale ad esempio una carta di uso del suolo. Con questa mappa le posizioni degli individui o delle popolazioni, così come quella dei patch o di altri elementi di interesse (ad esempio i corridoi), vengono esplicitamente incorporate.

I modelli che non sono spazialmente espliciti non possono essere utilizzati per esaminare aspetti della struttura del paesaggio, come ad esempio l'isolamento dei patch, poiché la disposizione degli stessi non è incorporata. La struttura spaziale del paesaggio, in cui le specie si trovano, deve essere invece esplicitamente considerata, in quanto la composizione del paesaggio e la disposizione dei patch giocano un ruolo fondamentale nel determinare le dinamiche delle popolazioni spazialmente strutturate nei paesaggi frammentati (Lindenmayer & Fischer 2007; Fahrig & Merriam 1994; Wiegand *et al.* 1999). Le distanze tra i patch, ad esempio, influenzano i tassi di dispersione e quest'ultima risulta molto importante nel determinare il rischio di estinzione di una specie (Akçakaya *et al.* 1999; Root 2004). Inoltre per simulare correttamente le dinamiche di una popolazione spazialmente strutturata, tutte le popolazioni locali devono essere modellizzate insieme, e non è possibile valutare la vitalità complessiva di una popolazione in base ad una raccolta di tanti modelli di PVA eseguiti su popolazioni singole (Akçakaya 1996; Akçakaya *et al.* 1999).

Per essere costruiti, i SEPM richiedono dati spaziali, derivanti da carte costruite con i GIS, riguardanti le esigenze ecologiche delle specie. I paesaggi più semplici utilizzati nella modellizzazione sono quelli in cui ciascuna cella presenta solo pochi attributi relativi alle caratteristiche dell'habitat, come il tipo o l'età di un bosco. Gli attributi possono essere assegnati alle celle casualmente o in pattern particolari, in questo tipo di "paesaggio artificiale". I paesaggi artificiali possono essere utili per la verifica dell'importanza "potenziale" delle variabili del paesaggio che sono difficili da isolare nei paesaggi reali (Lamberson *et al.* 1994; Dunning *et al.* 1995).

Con l'uso di tecnologie più sofisticate è possibile catturare l'eterogeneità dei paesaggi del mondo reale. Ciò viene fatto assegnando le caratteristiche dell'habitat, rilevanti per la specie, a ciascuna cella della griglia (Murphy & Noon 1992; Noon & McKelvey 1992). Queste informazioni possono essere rappresentate da carte di uso del suolo, da carte di copertura vegetale o da qualsiasi altra mappa che contenga caratteristiche su qualche aspetto dell'habitat importante per la specie (ad es. temperature, precipitazioni, pendenza, ecc.). Attraverso una funzione di probabilità di presenza i modelli, quindi, costruiscono una carta di idoneità ambientale per identificare i patch di habitat in grado di supportare le singole popolazioni. La struttura spaziale dei patch viene poi combinata con parametri demografici habitat-specifici (quali carrying capacity, tasso di fecondità, tasso di sopravvivenza, ecc.) e con dati dettagliati sui comportamenti dispersivi e sui meccanismi di selezione dell'habitat da parte delle specie oggetto di studio (Akçakaya 1996). I SEPM permettono quindi di eseguire le analisi di vitalità delle popolazioni spazialmente strutturate, di valutarne i rischi di estinzione e di esplorare le diverse opzioni di gestione, quali la progettazione di riserve o le reintroduzioni (Fig. 1.4).

Fig. 1.4 Schema concettuale di funzionamento dei SEPM (modificato da Akçakaya 2002).

Una caratteristica fondamentale dei SEPM è che questi possono incorporare gli spostamenti degli individui tra i diversi patch del paesaggio e sono in grado di analizzare come questi movimenti influenzino le dinamiche delle popolazioni spazialmente esplicite (Dunning *et al.* 1995). E' stato dimostrato come le capacità dispersive di una specie possano determinare come una popolazione sfrutterà con successo un dato paesaggio, costituendo di fatto il fattore limitante nel determinare le dimensioni future della popolazione che può essere sostenuta nel paesaggio (Root 2004). Risulta quindi di fondamentale importanza come viene parametrizzata la dispersione in questi modelli. E questo rappresenta probabilmente uno dei motivi principali che fanno dei SEPM uno strumento indispensabile per lo studio delle dinamiche di popolazione.

Nei SEPM si possono considerare sia movimenti temporanei tra i patch, ad esempio per la ricerca di cibo individuale, per il rifugio da predatori, o per gli accoppiamenti, oppure movimenti più permanenti che caratterizzano gli individui in dispersione. Possono essere specificati, inoltre, effetti margine, mortalità degli individui durante gli spostamenti e l'uso di corridoi o di altri elementi del paesaggio (Dunning *et al.* 1995). Il tasso di dispersione tra due popolazioni può dipendere da molti fattori, quali: le capacità dispersive della specie, il tipo di motilità degli individui, la distanza tra le popolazioni, il tipo di habitat usato durante la dispersione, la densità delle popolazioni e la disponibilità di risorse nei patch di origine (Akçakaya 2004).

Parametrizzare la dispersione risulta, tuttavia, particolarmente impegnativo in quanto sappiamo così poco della "percezione" del paesaggio da parte di un organismo o dei fattori che influenzano la transizione da una posizione spaziale ad un'altra. Gli ecologi di campo, che desiderano fare previsioni quantitative con i SEPM, dovrebbero riconoscere la necessità di investire un notevole sforzo verso una migliore comprensione del meccanismo dispersivo delle varie specie.

Esistono due tipi principali di modelli di popolazione spazialmente espliciti: i modelli individualbased e i modelli population-based. Nei modelli individual-based le celle possono essere occupate al massimo da un individuo e, quindi, le dimensioni degli home range individuali sono vincolate dalle dimensioni delle celle (cioè dalla risoluzione). Nei modelli population-based, invece, le celle possono essere occupate al massimo da una popolazione, quindi, sono le estensioni delle popolazioni ad essere vincolate, in questo caso, dalle dimensioni delle celle (risoluzione).

Nei modelli individual-based viene proiettata la posizione futura di ogni individuo nel paesaggio e gli individui acquisiscono le caratteristiche di fitness associate con il tipo di cella che occupano (Lima & Zollner 1996; Wiegand *et al.* 1999). Possono essere indagati, ad esempio, il foraggiamento, la crescita e la predazione di ogni individuo che alla fine si traducono in fitness individuale (Turner *et al.* 1993). I parametri riguardanti l'intera popolazione sono calcolati, quindi, seguendo il destino di tutti gli individui nel tempo.

Le proiezioni dei modelli population-based riguardano, invece, la popolazione e queste vengono eseguite attraverso la parametrizzazione dei dati demografici specificati per ogni popolazione. Per gli organismi abbondanti, quali roditori o insetti, questo risulta essere l'approccio più appropriato di modellizzazione, in quanto è difficile seguire il destino di tutti gli individui di una grande popolazione e richiede un eccessivo sforzo computazionale (Satoh 1990; Hassel *et al.* 1991; Palmer 1992). In questa ricerca si è infatti deciso di costruire un SEPM population-based per il moscardino.

1.8.1 Utilità dei modelli di popolazione spazialmente espliciti

I SEPM forniscono un potente strumento per lo studio delle popolazioni spazialmente strutturate e l'analisi dell'impatto della struttura del paesaggio sulle dinamiche delle popolazioni (Dunning *et al.* 1995;. Pulliam & Dunning 1995; Wiegand *et al.* 1999, 2004).

In ambito scientifico, la modellizzazione permette di selezionare particolari aspetti della realtà e rappresentarli con i linguaggi della logica, stabilendo fra tali aspetti relazioni di tipo matematico al fine di: acquisire le conoscenze su come funziona il sistema, predire come diventerà in futuro e prendere decisioni riguardo a come poter gestire (Akçakaya 2004). I SEPM permettono, quindi, di simulare le dinamiche delle popolazioni spazialmente strutturate e prevederne dimensioni e distribuzioni future in un determinato intervallo di tempo (Boyce 1992; Lacy 1993; Burgman *et al.* 1993). Si possono così valutare le minacce delle diverse specie in termini di rischio di estinzione, o quasi-estinzione, o di declino futuro di una popolazione, oltre alle diverse opzioni per un loro recupero (Ludwig 1999; Brook *et al.* 1997; Brook *et al.* 2000; Akçakaya & Sjögren-Gulve 2000).

La modellizzazione spazialmente esplicita delle popolazioni offre la possibilità di prevedere le risposte della popolazione in relazione ai cambiamenti nella quantità e disposizione degli habitat, cambiamenti innescati dai processi di perdita e frammentazione (Stevens & Baguette 2008; Baguette & Schtickzelle 2006; Root 1998; Nielsen *et al.* 2006). Si possono inoltre predire i potenziali effetti sulla vitalità di una popolazione variando sistematicamente fattori quali, la percentuale di habitat idoneo all'interno del paesaggio, la dimensione e forma dei patch o le loro distanze reciproche. Questi modelli permettono di studiare anche le capacità dispersive di una specie in relazione ai diversi gradi di isolamento e/o di connettività di un paesaggio, fattore determinante per la persistenza di una specie in paesaggi frammentati (Krausman 1997; Akçakaya 2004).

Sebbene non sostituiscano completamente gli studi di campo, i SEPM consentono di sfuggire ai limiti delle scale spaziali e temporali imposti dalle difficoltà logistiche delle ricerche (Dunning *et al.* 1995). Risulta impossibile infatti progettare esperimenti di campo in cui si può controllare e manipolare ogni parametro ambientale, soprattutto per quei processi che agiscono su scale grandi (Turner *et al.* 1989a, b; Johnson *et al.* 1992). I SEPM permettono, ad esempio, di cambiare le variabili ambientali mantenendo costanti i parametri demografici della popolazione modellizzata, o viceversa. In aggiunta, la replicazione degli esperimenti su larga scala risulta a volte eccessivamente costosa ed è spesso difficile ottenere un campione statisticamente significativo. Le simulazioni di un modello, invece, possono essere replicate varie volte in modo da ottenere una stima di range di effetti potenziali (Turner *et al.* 1995).

In questa ricerca in realtà lo studio di campo è servito alla raccolta dei dati e alla stima dei parametri demografici utilizzati per la parametrizzazione dei SEPM. Ad una scala relativamente piccola, infatti, crediamo che l'integrazione dei due approcci possa da una parte spiegare meglio i complessi processi di perdita e frammentazione dell'habitat e dall'altra fornire le strategie di conservazione ottimali per le specie minacciate.

L'utilità dei SEPM non si limita solo agli studi sulla frammentazione, ma abbraccia molti altri campi. Si sono rilevati particolarmente utili, ad esempio, nello studio delle complesse interazioni in un sistema predatore-preda (Griffin & Mills 2004) e dei comportamenti transitori di una popolazione (Lamberson *et al.* 1992). Altri campi più applicativi riguardano la gestione della fauna selvatica come la pianificazione dei programmi di introduzione, reintroduzione e traslocazione (Schadt *et al.* 2002; Mladenoff *et al.* 1999), il controllo dei predatori (Akçakaya 2004; Griffin & Mills 2004), la diffusione delle specie esotiche (Rushton *et al.* 1997), gli effetti sulle popolazioni del prelievo venatorio (Sezen *et al*. 2004) o delle operazioni di prelievo di legname (Griffin & Mills 2004; Liu *et al*. 1995).

La comunicazione tra i gestori del territorio e gli ecologi rimane una sfida importante e i modelli di popolazione spazialmente espliciti forniscono un linguaggio comune tra queste diverse figure (Burgman *et al.* 1993; Akçakaya *et al.* 1999; SjogrenGulve & Ebenhard 2000; Beissinger & McCullough 2002; Morris & Doak 2002).

A differenza dei modelli di idoneità ambientale, i SEPM prendono in considerazione sia le relazioni specie-habitat che la disposizione degli habitat nello spazio e nel tempo (Dunning *et al.* 1995), andando ben oltre i semplici confronti di habitat idonei e non idonei. In questo modo il gestore ha a disposizione uno strumento per determinare non solo quali tipologie di habitat siano necessarie, ma anche indirizzare scelte gestionali che prendano in considerazione le dimensioni dei patch, la loro forma e la loro disposizione. Quindi i risultati dei modelli possono essere utilizzati per valutare e analizzare il successo di diverse opzioni gestionali, come l'habitat restoration o l'incremento della connettività, permettendo di scegliere quale strategia di gestione e conservazione possa massimizzare la probabilità di persistenza di una popolazione (Peres 1999; Lindenmayer *et al.* 1995; Sezen *et al.* 2004; Gerber 2004; Yamada *et al.* 2004). Si possono sviluppare delle classifiche relative delle diverse opzioni gestionali (McKelvey *et al.* 1992) e le strategie di gestione alternative possono essere valutate e classificate in termini di vitalità delle specie. Inoltre il confronto dei risultati dei modelli con i risultati di interventi gestionali sul campo dovrebbe essere un passo importante nello sviluppo di strategie di gestione adattativa (Walters 1986; Walters & Holling 1990; Conroy 1993; Wilhere 2002).

I SEPM sono, quindi, di fondamentale importanza per fornire ai gestori del territorio misure di conservazione ottimali delle diverse specie, in tempi relativamente brevi. È spesso difficile, infatti, condurre un set completo di studi sperimentali sul campo per capire la risposta delle specie in seguito a diversi interventi gestionali. Qualora sia fattibile, non si possono aspettare i tempi di risposta delle popolazioni, spesso molto lunghi, in relazione agli attuali tassi di estinzione delle specie.

I modelli spazialmente espliciti hanno fornito intuizioni anche nella progettazione di riserve per molte specie minacciate o in pericolo di estinzione (Thomas *et al.* 1990). Infatti la maggior parte dei piani di conservazione all'interno di una riserva hanno la necessità di considerare la posizione, il numero, la dimensione e la forma di patch di habitat critici, nel tentativo di prevedere la persistenza di una specie, permettendo di esplorare l'efficienza di diversi disegni di riserva (Lamberson *et al.* 1992, 1994; Dunning *et al.* 1995).

Infine, attraverso l'utilizzo dei SEPM, i gestori del territorio possono confrontare le esigenze conservazionistiche, come il mantenimento di una dimensione minima vitale di una popolazione, con altri tipi di esigenze, come gli obiettivi di produzione economica di un bosco (Akçakaya & Sjögren-Gulve 2000; Liu 1992, 1993; Liu *et al.* 1995).

1.8.2 Limiti dell'utilizzo dei SEPM

I SEPM non sono uno strumento infallibile e l'iniziale entusiasmo è stato smorzato da voci critiche che hanno messo in evidenza i limiti di questi strumenti (Doak & Mills 1994; Wennergren *et al.* 1995; Meir & Kareiva 1997; Ruckelshaus *et al.* 1997; Beissinger & Westphal 1998; Hartway *et al.* 1998).

A causa della loro relativa facilità di applicazione è importante determinare e comprendere i limiti delle loro accuratezze predittive (Brook *et al.* 2000; Fieberg & Ellner 2000; Boyce 1992; Lacy 1993). La bontà di previsione di questi strumenti si basa sulla qualità dei dati utilizzati per parametrizzare il modello. Sono necessari accurati e spesso costosi studi di campo per stimare tutti i parametri necessari, e la mancanza dei dati può rappresentare un importante fattore limitante per una corretta applicazione di questi strumenti. Molte volte l'incertezza nelle stime dei parametri raccolti sul campo non è causa di un'insufficiente raccolta dei dati o di tecniche di analisi dei dati, ma del basso numero di individui e della conseguente alta stocasticità intrinseca (Doak & Mills 1994; Beissinger e Westphal 1998; Wiegand *et al.* 2004). Con le analisi di sensitività si può esaminare l'importanza relativa dei parametri che maggiormente influiscono sui risultati e utilizzarle per concentrare gli sforzi sul campo, al fine di migliorare la stima di quel parametro (Dunning *et al.* 1995).

Per superare queste difficoltà, inoltre, si possono reperire le informazioni di cui abbiamo bisogno da dati pubblicati in bibliografia (Pulliam *et al.* 1992). Ad una scala relativamente dettagliata, tuttavia, l'accuratezza delle previsioni dei modelli parametrizzati con dati bibliografici è inferiore rispetto a quella data dai modelli parametrizzati con dati raccolti in campo, delle stesse popolazioni locali oggetto della ricerca.

Un altro problema è rappresentato dall'amplificazione degli errori di stima dei parametri. Un piccolo errore nelle stime dei parametri, infatti, si può amplificare, attraverso una concatenazione di calcoli, nei risultati del modello (Kareiva *et al.* 1997; Beissinger & Westphal 1998). Ad esempio Ruckelshaus *et al.* (1997) hanno trovato che gli errori dovuti all'incertezza in un parametro, che descrive la mortalità dei dispersori, si sono propagati in grandi errori del successo di dispersione degli organismi in paesaggi frammentati, previsto dal modello. Molte volte, quindi, si deve comprendere il modo in cui l'incertezza di questi parametri venga trasmessa. L'incertezza è una caratteristica prevalente dei dati in ecologia. Un semplice modo per incorporarla in un SEPM è quello di stimare gli intervalli di confidenza dei parametri del modello (limiti inferiori e superiori, invece che stime puntuali). In questo modo si ottiene un intervallo delle possibili risposte della popolazione, come ad esempio un intervallo di probabilità di estinzione o di rischio di declino delle popolazioni (Akçakaya 2004; Lopez 2004). Le decisioni possono pertanto essere prese con maggior conoscenza circa l'ampiezza e l'importanza dell'incertezza.

Wiegand *et al.* (2004) sostengono che appropriate procedure di calibrazione dei modelli possono compensare la mancanza di stime accurate dei parametri. Il loro studio si basa su un modello individual-based per l'orso bruno (*Ursus arctos*) dopo un programma di reintroduzione in Austria. Il modello sintetizza le conoscenze che sono state accumulate in molti anni di ricerca sulle popolazioni di orso bruno (riassunte in Swenson *et al.* 2000). Per calibrare il modello hanno sviluppato una procedura che mette a confronto le dinamiche di popolazione simulate con quelle conosciute (osservazioni nelle aree campione dell'area di studio). Il modello così calibrato ha prodotto previsioni con un'incertezza notevolmente ridotta.

Risulta fondamentale verificare la validità delle simulazione con lavori empirici per poter stabilire le capacità predittive dei modelli (Conroy *et al.* 1995). I risultati dei modelli e i dati raccolti in campo sulle dinamiche di popolazione non coincidono sempre (McCarthy *et al.* 2001a). Questa discrepanza è dovuta prima di tutto al fatto che i modelli sono, per definizione, rappresentazioni imperfette della realtà, oltre ai motivi discussi sopra riguardo l'incertezza dei dati. Lo scopo del testare i modelli è rivolto a scoprire importanti discrepanze, e questa è una parte importante dell'uso dei modelli di popolazione nell'attività gestionale (McCarthy *et al.* 2001b). Le validazioni, tuttavia, sono state raramente intraprese, soprattutto a causa dell'eccessivo sforzo computazionale (Higgins *et al.* 2000; McCarthy *et al.* 2000; Rushton *et al.* 2000; Wiegand *et al.* 2004). Trattare più specie in un paesaggio rimane una sfida significativa per i modelli di popolazione. La maggior parte dei modelli spazialmente espliciti sono stati sviluppati per una o poche specie e sono adatti solo per queste specie. Tuttavia possono emergere proprietà emergenti attraverso il confronto dei risultati di più modelli caso-specifici (Dunning *et al.* 1995).

Infine, una volta sviluppati, i modelli possono essere vincolati sia dalla risoluzione che dall'estensione. Sebbene sia possibile sviluppare leggi di scala che permettano l'estrapolazione di dati o delle previsioni a tutte le scale (Turner *et al.* 1989a; Levin 1992), questo non risulta semplice e/o sempre possibile (Turner *et al.* 1995).

1.9 Il moscardino come specie modello per sviluppare strategie di conservazione ottimali in paesaggi frammentati

Come discusso in precedenza i processi di perdita e frammentazione dell'habitat sono riconosciuti essere le principali cause di minacce della biodiversità (Foley *et al.* 2005). Trovare delle strategie di conservazione, comuni a più specie e a più contesti, risulta fondamentale in paesaggi frammentati. Le azioni di conservazione, perché siano efficaci e concrete, devono basarsi su solide basi scientifiche che, come abbiamo visto, prendano in considerazione i principali parametri demografici delle specie influenzate da questi processi.

La scelta del moscardino come specie modello per trovare strategie di conservazione ottimali in paesaggi frammentati si basa su tre motivi principali:

- Le numerose evidenze sperimentali che dimostrano la sua sensibilità ai processi di perdita e frammentazione dell'habitat (Bright *et al.* 1994; Bright & Morris 1996; Capizzi *et al.* 2002; Mortelliti *et al.* 2011);
- Le tecniche di studio che rendono particolarmente facile il reperimento dei principali parametri demografici (Bright *et al.* 2006; Morris 2003; Bright & Morris 1996);
- L'ampia bibliografia dedicata alla biologia di base della specie (Bright *et al.* 2006; Juškaitis 2008).

Il moscardino è un roditore strettamente arboricolo che evita movimenti sul terreno (Bright 1988). La forte specializzazione ad ambienti forestali influenza la vulnerabilità delle specie ai processi di perdita e frammentazione dell'habitat (Andrén 1997a; Delin & Andrén 1999). Inoltre la percezione del paesaggio da parte di una specie strettamente arboricola, come il moscardino, approssima meglio come viene concettualizzato il paesaggio negli studi ecologici: distinzione netta tra gli elementi del paesaggio (patch, corridoi e matrice), risultando più realistici tutti i modelli che vengono applicati per il suo studio.

1.9.1 Finalità del progetto

Questa tesi è parte di un progetto di ricerca più ampio che studia l'ecologia, le dinamica di popolazione e le strategie ottimali di conservazione dei piccoli mammiferi in paesaggi frammentati (Mortelliti *et al.* 2011; Santarelli 2011).

Gli studi pregressi sul moscardino in paesaggi frammentati dell'Italia centrale, attraverso i modelli di presenza, hanno dimostrato che la maggior minaccia, per questa specie, è rappresentata dalla perdita di habitat, mentre il ruolo della frammentazione *per se* è risultato essere molto più marginale (Mortelliti *et al.* 2011). Anche l'interruzione della connettività, seppure in modo minore, è stata dimostrata influenzare la probabilità di presenza del moscardino in questi paesaggi e, a scala del patch, la struttura della vegetazione, in particolare la diversità dello strato arbustivo (Mortelliti *et al.* 2010a, 2011; Mortelliti 2012 *submitted*).

Per comprendere meglio come i diversi processi agiscono sulle complesse dinamiche di popolazione è in corso questo progetto di ricerca a larga scala, con durata di 4 anni. Gli obiettivi del progetto sono quelli di ampliare le conoscenze sull'ecologia di popolazione, attraverso lo studio dei principali parametri demografici (quali densità, tasso di accrescimento della popolazione, fecondità, sopravvivenza), dei comportamenti dispersivi e dell'uso dello spazio, di 4 specie di micromammiferi (*Muscardinus avellanarius, Apodemus sylvaticus, Apodemus flavicollis e Myodes glareolus*), in frammenti boschivi dell'Italia centrale. Le finalità sono quelle di trovare strategie di conservazione ottimali delle specie in paesaggi frammentati, attraverso la parametrizzazione dei modelli di popolazione spazialmente espliciti, confrontando scenari di non azione con scenari di interventi gestionali sull'habitat. Verranno valutati quantitativamente l'efficacia di differenti strategie di conservazione, quali l'habitat restoration, l'incremento della connettività e diverse azioni di gestione dell'habitat. Inoltre, si valuterà l'allocazione ottimale delle risorse per trovare quale sia il miglior modo di investire risorse nelle azioni di conservazione e i costi associati a questi interventi gestionali.

1.9.2 Obiettivi della tesi

Il reperimento in campo dei principali parametri demografici e la successiva parametrizzazione dei modelli di popolazione spazialmente espliciti hanno permesso, in questo studio, di analizzare le dinamiche di popolazione del moscardino in paesaggi frammentati.

Si sono analizzate le dinamiche delle popolazioni nei tre paesaggi che compongono l'area di studio, con scenari di cambiamento e non cambiamento dell'habitat. Gli scenari di cambiamento hanno previsto la sottrazione di diverse quantità di habitat dal paesaggio, simulando, di fatto, i processi di perdita e di frammentazione. Per simulare i pattern di riduzione di habitat causati da questi due processi sono state prese in considerazione due modalità differenti di sottrazione di habitat, una "diffusa" e una "concentrata".

Come già emerso, distinguere i processi vuol dire saper isolare gli effetti che producono su una data specie e quindi poter prendere le giuste azioni di gestione e conservazione per poterli contrastare. L'esigenza di indagare gli effetti indipendenti di perdita di habitat e frammentazione *per* se, a livello demografico, nasce dal fatto che gli studi di distribuzione possono mascherare, o nascondere, processi critici che si verificano a livello di popolazione (Holland & Bennett 2010).

Le strategie di conservazione adottate per mitigare gli impatti di perdita e frammentazione dell'habitat avvengono troppo lentamente rispetto gli attuali tassi di perdita di biodiversità

(Lindenmayer & Fischer 2007). In questo contesto, attraverso la simulazione spazialmente esplicita delle popolazioni, si potranno fornire in tempi relativamente brevi delle indicazioni gestionali efficaci per la conservazione delle specie nei paesaggi frammentati. Con il protocollo di simulazioni adottato, in particolare, si potranno dare ai gestori del territorio delle misure sulla quantità di habitat che sia possibile sottrarre ulteriormente dai paesaggi, per la sostenibilità delle popolazioni di moscardino, e le modalità di taglio, in termini di aggregazione spaziale della superficie boschiva destinata al taglio.

Gli obiettivi specifici della ricerca sono:

- Analizzare la vitalità delle popolazioni di moscardino, in termini di abbondanza e occupancy delle popolazioni nel tempo in tre paesaggi frammentati dell'Italia centrale;
- Effettuare delle simulazioni di perdita e frammentazione dell'habitat finalizzate a valutare i diversi impatti a livello di popolazione di questi due processi;
- Fornire delle indicazioni gestionali su quanto habitat possa essere ulteriormente sottratto nei paesaggi e in quale modalità, per sostenere delle popolazioni di moscardino ancora vitali.

2 BIOLOGIA DEL MOSCARDINO

2.1 Sistematica

Il moscardino è un roditore arboricolo della famiglia *Gliridae* Muirhead, 1819, comprendente tre sottofamiglie e 9 generi, distribuiti nella regione paleartica. Gli altri esponenti italiani di questa famiglia sono: il Ghiro, *Glis glis* (Linnaeus 1766), il Driomio, *Dryomys nitedula* (Pallas 1778) e il Quercino, *Elyomys quercinus* (Linnaeus 1766).

Per l'Italia sono riconosciute due sottospecie (Storch 1978): quella nominale, *Muscardinus avellanarius avellanarius* (Linnaeus 1758), presente in tutta Europa ad eccezione dell'Italia centro-meridionale e della Grecia dove viene vicariato da *Muscardinus avellanarius speciosus* (Dehne 1855). La fascia di sovrapposizione si trova sull'Appennino Ligure. Quest'ultimo presenta nel complesso una colorazione più vivace, i molari sono più larghi, con il terzo inferiore generalmente provvisto di quattro radici al posto di tre (Toschi 1965). Dall'analisi elettroforetica di sistemi gene-enzima la sottospecie peninsulare risulta differenziata

rispetto a quella alpina in base ai due loci genici *Sdh* e *Hk*, risultati discriminanti, ed alla *Est-1*, parzialmente discriminante (Filippucci & Kotsakis 1995). Allo stato attuale delle conoscenze non appaiono quindi giustificate ulteriori distinzioni sottospecifiche.

2.2 Corologia

Il genere *Muscardinus* Kaup, 1829, è monospecifico, a distribuzione paleartica-occidentale, dalla Francia alla Russia europea, a nord fino alla Svezia, a sud fino ai Pirenei, Peloponneso e Turchia settentrionale. Popolazioni insulari si ritrovano nell'Inghilterra meridionale, nell'Isola di Wight e a Corfù (Storch 1978). La specie si ritrova in tutta la penisola italiana, compresa la Sicilia nord-orientale (Amori *et al.* 1994), risultando tuttavia rara o assente nella Pianura Padana e nel Salento, e in generale in tutte le aree maggiormente antropizzate. È assente inoltre in Sardegna e nelle isole minori (Fig. 2.1).

Fig. 2.1 Areale di distribuzione del moscardino (Muscardinus avellanarius)

2.3 Morfologia

Tra i Gliridi europei è quello che presenta le dimensioni minori. La coda è più corta del corpo, uniformemente pelosa, e parzialmente prensile, le orecchie sono piccole ed arrotondate, prive di pelo, gli occhi abbastanza sviluppati e prominenti. La colorazione di dorso e fianchi varia dal fulvogiallastro al marrone-rossiccio, mentre il ventre è di color crema tendente al bianco. Piedi anteriori con dita relativamente lunghe e provviste di cinque callosità allargate. Piedi posteriori corti e larghi, con pollice rudimentale e privo di unghia, e con sei cuscinetti plantari allargati. Mammelle: pettorali 1-1, ascellari 1-1, inguinali 2-2 = 8 (Amori *et al.* 2008).

Caratteristica del genere è la forma del *glans penis*, che si presenta più corto dell'os penis. Quest'ultimo differisce da quello degli altri Gliridi italiani poiché si presenta di dimensioni nettamente minori e non curvato (Kratochvil 1973; Simson *et al.* 1995). Cranio subovale, con area occipitale arrotondata e profilo dorsale convesso. Il rostro è breve e le bulle si presentano poco sviluppate; la mandibola è robusta e presenta una tipica fenestratura nel processo angolare (Amori *et al.* 2008).

La morfologia dentale del genere Muscardinus è descritta da Ellerman (1940) e Toschi (1965). I molari presentano corona appiattita. Le file di molari superiori presentano un premolare di piccole dimensioni, con generalmente due creste. Il primo molare, di forma allungata, è molto più grande del secondo, con cinque creste oblique ben sviluppate. Le quattro depressioni che ne risultano sono molto ampie. Il secondo molare presenta sette creste trasversali, con depressioni più ridotte. Il terzo molare è simile al secondo, ma con dimensioni minori e creste meno sviluppate. I denti della fila molare inferiore presentano tutti sei creste, ad eccezione del premolare e del terzo

molare, che presentano ambedue dimensioni ridotte. Il primo molare inferiore è meno allargato del superiore, con creste meno oblique.

2.4 Riproduzione

La riproduzione del moscardino presenta una discreta variabilità. In gran parte dell'Europa comincia versa la fine della primavera e può proseguire per tutto il periodo estivo. Panchetti *et al.* (2004) hanno riscontrato delle differenze nei periodi riproduttivi in diverse località del Lazio, con differenti condizioni climatiche: in una faggeta collinare dei Monti Cimini è risultato compreso tra maggio e luglio, mentre in due località costiere caratterizzate da macchia mediterranea e bosco termofilo, si è concentrato nel periodo autunnale. In Sicilia gli atti riproduttivi possono avvenire durante tutto l'anno ma si concentrano in particolare nei mesi di novembre-dicembre ed in misura minore nei mesi di maggio-giugno (Sarà *et al.* 2001).

Il potenziale riproduttivo del moscardino è piuttosto ridotto soprattutto se confrontato con quello di altri roditori di taglia simile. Le femmine possono effettuare fino a due parti per anno, eccezionalmente tre, ma il parametro è influenzato dalle condizioni climatiche (Juškaitis 2003a). La gestazione è di 22-24 giorni, il numero di piccoli per parto varia tra uno e otto, con valori medi che oscillano tra tre e cinque a seconda degli studi (Gaisler *et al.* 1977; Bright & Morris 1996; Sarà *et al.* 2001; Juškaitis 2003a, 2003b). Lo svezzamento avviene in sei-otto settimane (Bright & Morris 1996).

Il moscardino è una specie relativamente longeva, che in natura riesce a sopravvivere per trequattro anni, eccezionalmente cinque (Catzeflis 1984; Morris *et al.* 1990; Bright & Morris 1996).

2.5 Ecologia

È una specie tipicamente forestale, che abita i boschi e le siepi, soprattutto se provvisti di una adeguata diversità sia strutturale che in termini di composizione specifica (Bright & Morris 1990 1993; Capizzi *et al.* 2002). Frequenta soprattutto i boschi di latifoglie o misti, ma lo si può ritrovare anche in boschi di conifere qualora sia presente un abbondante sottobosco o radure con arbusti. È stato dimostrato che oculate pratiche forestali possono apportare un effettivo vantaggio per la presenza di questa specie (Bright & Morris 1992). È diffuso dal piano basale fino a quote di media montagna; in Italia è segnalato fino a 1780 m nel Parco Nazionale del Gran Paradiso (Patriarca & Debernardi 1997). È una specie notturna strettamente arboricola, che trascorre gran parte del tempo sulle chiome degli alberi più bassi o dei cespugli (Bright & Morris 1991). Tuttavia la presenza di fili d'erba utilizzati spesso come materiale da costruzione per il nido dimostra che la specie risulta essere attiva anche al suolo (Morris *et al.* 1990), sebbene diversi studi condotti mediante trappolamenti al suolo e radiotelemetria suggeriscono che questa attività sia abbastanza rara (Bright & Morris 1990; Capizzi 1997).

All'uscita dall'ibernazione invernale l'animale costruisce un nido sub-sferico di 8-15 cm di diametro nel folto dei cespugli, oppure all'interno di cavità degli alberi, in vecchi nidi di uccelli o di *Sciurus vulgaris* (Bright & Morris 1991). Il nido è costruito con sottili strisce di corteccia di arbusti grossolanamente intrecciata, spesso accompagnata o parzialmente sostituita da fili d'erba, muschio e foglie. Il foro d'ingresso del nido è ben definito e ciò consente di distinguerlo da quello degli uccelli. Lo stesso individuo può costruire fino a quattro nidi, ma la maggior parte delle volte

ne utilizza solo due (Morris *et al.* 1990; Bright & Morris 1992). Il moscardino mostra una buona propensione ad occupare i nidi artificiali (*nestbox*), sia quelli predisposti per gli uccelli, sia quelli appositamente costruiti per lo studio di questi roditori, che a differenza dei primi presentano il foro d'entrata rivolto verso il tronco.

L'inizio e la durata del periodo di ibernazione mostra profonde differenze nelle diverse zone che compongono l'areale di questa specie. In generale, confrontando i dati dalla Lituania alla Sicilia, si può osservare come il periodo di ibernazione si allunga all'aumentare della latitudine e dell'altitudine. In gran parte dell'Europa come nella fascia vegetazionale montana dell'arco alpino l'ibernazione ha luogo dal periodo tardo autunnale fino a quello medio primaverile (Richards et al. 1984; Bright & Morris 1990, 1991, 1993; Catzeflis 1995; Juškaitis 1997; Panchetti et al. 2004), mentre in ambienti mediterranei non si verifica un vero e proprio periodo di ibernazione, ma delle fasi di dormienza che si protraggono per alcune settimane, nei periodi più freddi dell'anno (Sarà et al. 2001): in queste zone la specie tende invece ad estivare durante i mesi più caldi e si riproduce durante tutto l'anno (Panchetti et al. 2004; Sarà 2007). I nidi occupati durante l'ibernazione sono differenti da quelli utilizzati durante la fase attiva. Nell'Europa centro-settentrionale l'ibernazione avviene prevalentemente nel suolo, oppure in cavità, in ceppaie e all'interno di tane in disuso di altri roditori (Bright & Morris 1996), mentre in Italia si è riscontrato l'uso di nidi, tuttavia più compatti rispetto a quelli primaverili (Santini 1983). L'occupazione delle cassette nido nel periodo dell'ibernazione non è infrequente in Italia (Sorace et al. 1998; Capizzi & Santini 2007), mentre risulta più raro in altre parti del suo areale.

I movimenti degli individui sono piuttosto limitati. Bright & Morris (1991) hanno registrato spostamenti lineari medi per notte di 184 e 132 m, rispettivamente per i maschi e per le femmine. Spostamenti maggiori sono stati registrati nelle siepi, con valori medi di 295 m (Bright & MacPherson 2002). Differenze tra sessi si osservano anche nelle dimensioni degli home range. In Inghilterra, Bright & Morris (1991, 1992) hanno registrato valori medi compresi tra 0.45 e 0.68 ha per i maschi e tra 0.19 e 0.22 per le femmine. Dalla disposizione degli home range rispetto ai sessi degli individui è stata ipotizzata una organizzazione spaziale in cui lo spazio vitale dei maschi tende a sovrapporsi a quello di una o più femmine, e ad evitare sovrapposizioni con quello di altri maschi (Bright & Morris 1992). In Lituania sono stati registrati valori medi degli home range pari a 1 ha per i maschi e 0.8 per le femmine (Juškaitis 1997).

Come negli altri Gliridi, l'alimentazione è condizionata dall'assenza dell'intestino cieco, che rende impossibile la digestione di cibi ad alto contenuto in cellulosa. La dieta del moscardino si compone principalmente di fiori e frutti che si rendono via via disponibile durante il periodo di attività della specie, e per brevi periodi, anche su invertebrati e uova di uccelli (Storch 1978; Juškaitis 2007a; Sarà & Sarà 2007). Gli studi condotti in Inghilterra ed in altri paesi europei (Richards *et al.* 1984; Bright & Morris 1993; Juškaitis 2007b; Sarà & Sarà 2007) mostrano che durante la primavera il moscardino si alimenta prevalentemente dei fiori di *Crataegus monogyna, Quercus* spp., *Acer* spp., *Lonicera* spp. e *Castanea sativa*. Durante l'estate, in mancanza di fiori e di frutti maturi, la specie si nutre anche di insetti, in particolare di larve di lepidotteri e di afidi. Con l'autunno, l'abbondanza di semi fa sì che essi diventino la fonte di cibo principale, in particolare quelli di *Taxus baccata*, *Viburnum* spp. e *Rubus ulmifolius*. Col sopraggiungere della loro maturazione, le nocciole diventano la fonte principale, mentre le ghiande sono consumate in misura inferiore, forse a causa dell'elevato contenuto in tannini che le rende di difficile digestione (Bright & Morris 1996).

Le popolazioni manifestano densità piuttosto basse. Negli studi condotti in Inghilterra, la densità è risultata compresa tra 3 e 11.9 ind/ha (Bright & Morris 1990), mentre in Lituania uno studio pluriennale ha mostrato densità autunnali comprese tra 2.3 e 2.8 ind/ha e primaverili comprese tra 0.6 e 0.9 ind/ha (Juškaitis 2003a). Anche in Italia Sarà *et al.* (2001) hanno registrato densità autunnali superiori a quelle primaverili, con valori medi compresi tra 4.5 e 8.2 ind/ha, mentre

Sorace *et al.* (1999) hanno riscontato densità massime di 6 ind/ha nell'Italia centrale. L'uso di cassette nido presenta tuttavia l'inconveniente di indurre l'immigrazione di alcuni individui da aree adiacenti, provocando un incremento artificiale della densità di individui.

I predatori naturali del moscardino sono principalmente Strigiformi (*Tyto alba, Strix aluco*) (Contoli 1988) e Falconiformi (*Buteo buteo*) (Contoli 1988; Scaravelli & Aloise 1995; Capizzi & Luiselli 1998; Capizzi 2000) tra gli uccelli, e i Carnivori tra i mammiferi (*Vulpes vulpes, Martes foina, Felis silvestris*) (Scaravelli & Aloise 1995). La facilità nell'amputazione della coda è spesso usata da questa specie per sfuggire all'attacco di un predatore. Sono pochi i dati in merito alla competizione con altre specie. Da una ricerca condotta in Sicilia è stato osservato che nelle zone in cui la specie è sintopica con *Parus caeruleus* si instaura una possibile competizione nell'utilizzo delle cassette nido. È stato inoltre osservato che l'aumento di densità di una delle due specie provoca un calo di densità dell'altra (Sarà *et al.* 2005). In altre località dell'Italia centrale (Palo Laziale, Burano e Orbetello) è stata riscontrata competizione con *Rattus rattus* per l'occupazione delle cassette nido (Sorace *et al.* 1994).

2.6 Legislazione e rapporti con l'uomo

Il moscardino è protetto a livello nazionale dalla legge 157/92, ed è incluso nell'elenco di "specie di interesse comunitario che richiedono una protezione rigorosa" dell'Allegato IV della direttiva comunitaria 92/43 "Habitat". È incluso inoltre nell'Allegato III ("Specie di fauna protette") della Convenzione di Berna. Nella Red List dell'IUCN figura nella categoria "Lower risk – Near-threatened" (Morris 1999).

In Italia la specie è abbastanza diffusa, anche se in Sicilia è considerata il mammifero terreste più raro (Sarà *et al.* 2000, 2001). Presenta invece dei preoccupanti fenomeni di rarefazione in diversi paesi europei, in particolare in Inghilterra dove tuttora è in fase di declino (Bright & MacPherson 2002). I principali fattori di minaccia sono la perdita di habitat e in misura minore la frammentazione *per se* (Bright *et al.* 1994; Sarà *et al.* 2000; Capizzi *et al.* 2002; Mortelliti *et al.* 2010b). Il ripristino dell'habitat perduto ed un'oculata gestione delle siepi, principali vettori di spostamento per questa specie tra un patch ed un altro, sono di vitale importanza per garantire il flusso genico e la sopravvivenza di una popolazione in un paesaggio frammentato (Bright & MacPherson 2002; Mortelliti *et al.* 2010b). Tuttavia in paesaggi con meno del 10% di habitat forestale residuo, anche la presenza di lunghe siepi può avere un effetto limitato sulla probabilità di presenza del moscardino (Mortelliti *et al.* 2010b). La forma di governo a ceduo rappresenta la gestione idonea, purché i turni siano sufficientemente lunghi (almeno 15 anni) e i tagli siano distribuiti nello spazio e nel tempo, in modo tale da garantire un mosaico di ambienti con diverse stadi di ricrescita del soprassuolo (Bright & Morris 1996; Sarà *et al.* 2000; Capizzi *et al.* 2002).

3 MATERIALI E METODI

3.1 Area di studio

Lo studio è stato condotto in Italia centrale, nel territorio della Regione Lazio, in tre paesaggi differenti identificabili con: il territorio della Sabina, il paesaggio di Viterbo e la Riserva Naturale Selva del Lamone (Fig. 3.1). Per paesaggio, in questa ricerca, s'intende un'area definita dall'uomo di dimensione variabile tra circa 3 km² e 300 km² (appendice A; Fischer & Lindenmayer 2007).

Fig. 3.1. Immagine satellitare nella quale sono riportate le posizioni dei paesaggi campionati: Viterbo, Sabina e Lamone (fonte: Google Earth).

3.2 Regione Lazio

3.2.1 Inquadramento geografico

La Regione Lazio, con i suoi 17.202 km² di estensione areale, si colloca nel versante mediotirrenico, tra la catena appenninica ed il mar Tirreno.

Il paesaggio della regione Lazio è piuttosto eterogeneo, con prevalenza di zone collinari (il 54% della superficie) e montuose (26%); le pianure (20%) si incontrano per lo più in prossimità della costa e nelle zone alluvionali dei fiumi Tevere e Sacco. I diversi tipi litologici e i sistemi orografici infatti danno luogo a diverse regioni naturali ben caratterizzate dal punto di vista morfologico e vegetazionale (Blasi 1994).

Per quel che riguarda i rilievi montuosi (Pignotti 2009), i settori centro-orientale e sud-orientale, appartengono propriamente al versante occidentale della catena appenninica. Nello specifico: a nord-est spiccano i monti Sabini e Reatini, dove svetta il Massiccio del Terminillo (2.213 m slm) e, al confine con l'Abruzzo, il Monte Gorzano (2.455 m slm), la cui vetta, ubicata nel dominio dei Monti della Laga, è la più elevata del Lazio. Sempre lungo il confine con l'Abruzzo, si sviluppano poi

verso sud i Monti Simbruini (Monte Contento 2.014 m) e, al di là dell'alta Valle dell'Aniene, la catena degli Ernici. Proseguendo ancora verso sud, lungo il confine con l'Abruzzo, si incontrano i monti della Meta, ai quali si raccorda, al limite con il Molise, il Massiccio delle Mainarde.

Nella porzione meridionale del Lazio si sviluppa un'altra dorsale montuosa ad andamento subparallelo alla catena appenninica e separata da quest'ultima da un'ampia pianura costituita dalla vallata del Fiume Liri e del suo affluente Sacco. Questa dorsale, mediamente meno elevata, è costituita dai Monti Lepini, Ausoni ed Aurunci. Il suo settore settentrionale confina con il dominio dei Colli Albani, mentre quello meridionale arriva fino alla Campania. I versanti occidentali invece si raccordano a nord con la Pianura Pontina, mentre nel settore meridionale, i rilievi montuosi arrivano fino al mare, costituendo le uniche coste alte del Lazio (promontorio del Circeo, Sperlonga e Gaeta). A questi vanno aggiunti gruppi montuosi minori nel settore ad est di Roma, quali i Monti Cornicolani, Prenestini e Tiburtini.

Oltre ai rilievi delle dorsali appenniniche, a caratterizzare il paesaggio laziale, sono i rilievi vulcanici dei Monti Vulsini, Cimini e Sabatini, a nord, in destra idrografica del Fiume Tevere e a sud i rilievi dei Colli Albani, immediatamente a sud della città di Roma. Questi rilievi sono caratterizzati da quote di poche centinaia di metri, ad eccezione del Monte Cimino la cui vetta raggiunge 1.053 m slm. La caratteristica principale di tutti questi rilievi vulcanici è che ospitano, ognuno, almeno un bacino lacustre la cui genesi è direttamente correlata con l'attività vulcanica. Questi laghi, allineati secondo la direttrice appenninica, sono, a partire da nord verso sud, il Lago di Bolsena (Monti Vulsini), Lago di Vico (Monti Cimini), Lago di Bracciano (Monti Sabatini), Laghi di Albano e Nemi (Colli Albani).

Le pianure del Lazio sono essenzialmente costiere, tra cui le più importanti la Maremma nell'alto Lazio, al confine con la Toscana e la Pianura Pontina, a sud dei Colli Albani e ad ovest della catena dei Monti Lepini, Ausoni ed Aurunci. A queste bisogna aggiungere i vasti altopiani, blandamente ondulati dei distretti vulcanici. Le pianure più interne della Regione sono costituite dalla depressione percorsa dai Fiumi Liri e Sacco e dalla vallata del Tevere. Nella Pianura Pontina, interessata in passato da grandi opere di bonifica, il fenomeno più imponente è quello della subsidenza, collegata ai fenomeni di compattazione recente dei sedimenti a componente organica e all'abbattimento della falda per scopi irrigui (A.A.V.V. 1990). Infatti essa rappresenta la parte più depressa da un punto di vista morfologico-strutturale dell'intero Lazio; essa è stata invasa a più riprese dal mare durante il Pliocene e il Quaternario, tanto che il rilievo isolato del M. Circeo, che da essa si erge verso ovest, è passato più volte da isola a promontorio.

Il clima della regione presenta una notevole variabilità da zona a zona (Pignotti 2009). In generale, lungo la fascia costiera, i valori di temperatura variano tra i 9-10 °C di gennaio e i 24-25 °C di luglio, con precipitazioni piuttosto scarse lungo il tratto settentrionale (valori minimi inferiori ai 60mm medi annui), mentre raggiungono valori attorno ai 1.000 mm medi annui nel tratto costiero a sud, al confine con la Campania.

Verso l'interno il clima ha caratteri più spiccatamente continentali, man mano che ci si allontana dalla costa. Gli inverni sono freddi e con temperature minime piuttosto rigide e prossime allo zero e, talvolta, anche inferiori. Le precipitazioni aumentano in genere con la quota e sono mediamente distribuite nelle stagioni intermedie e in quella invernale, con un'unica stagione secca, quella estiva. I massimi pluviometrici si registrano nei massicci montuosi posti al confine con l'Abruzzo, maggiormente esposti alle perturbazioni atlantiche, raggiungendo valori anche superiori ai 2.000 mm; in inverno, invece, le precipitazioni sono generalmente nevose.

3.2.2 Lineamenti geologici e geomorfologici

Il paesaggio fisico del Lazio è molto eterogeneo, variando dalle zone litoranee del Tirreno fino alle zone più interne della catena appenninica, tra le quali sono compresi i rilievi vulcanici, i paesaggi lacustri e le ampie vallate del Fiume Tevere. Questa varietà rispecchia l'estrema complessità delle vicende geologiche che hanno interessato il Lazio a partire dal mesozoico fino ai giorni nostri.

I processi interni alla crosta terrestre, responsabili dell'emersione e del sollevamento recente dell'Appennino, nonché dell'attività vulcanica pleistocenica, hanno disegnato l'ossatura generale dei rilievi del Lazio, sulla quale si sono esplicate, e continuano tuttora ad agire, le azioni modellatrici degli agenti esogeni; quest'azione di modellamento si è tradotta in una serie di morfotipi caratteristici, che hanno assunto aspetti peculiari anche in funzione della natura litologica e del grado di tettonizzazione delle rocce affioranti (A.A.V.V. 1990).

È possibile distinguere tre domini paleogeografici ai quali corrispondono tre grandi unità strutturali:

- 1. **Dominio toscano**, con una successione calcareo-marnosa di mare profondo mesocenozoica e silico-clastica oligocenica, che affiora nel settore nordoccidentale della regione (Monti della Tolfa);
- 2. **Dominio umbro-sabino**, caratterizzato da una successione calcarea e calcareo-marnosa meso-cenozoica affiorante nei rilievi omonimi e nell'alto reatino;
- 3. **Dominio della piattaforma laziale-abruzzese-campana**, con una successione calcarea di mare basso, attualmente esposta in affioramento nei rilievi al confine Lazio-Abruzzo, nella dorsale dei Simbruini-Ernici e nei rilievi della fascia costiera a sud di Roma (Monti Lepini-Ausoni-Aurunci).

La più importante linea tettonica a scala regionale è costituita dalla cosiddetta linea Olevano-Antrodoco, ad andamento N-S, alla quale corrisponde attualmente un sovrascorrimento delle unità paleogeografiche dei rilievi sabini e del reatino al di sopra delle successioni calcaree della piattaforma laziale-abruzzese.

Nella regione Lazio si possono individuare i seguenti domini geologici: i grandi distretti vulcanici, le pianure costiere, con la porzione terminale della Valle Tiberina, le dorsali appenniniche carbonatiche dei Lepini-Ausoni-Aurunci e dei Simbruini-Ernici e le dorsali calcareo-marnose della Sabina. Di seguito verranno descritti i domini geologici e le strutture geomorfologiche ad essi associate.

 Distretti vulcanici. Si hanno tre tipi di domini vulcanici, quelli caratterizzati principalmente da litotipi acidi, da litotipi alcalino-potassici con attività centrale e da alcalino-potassici con attività areale. I distretti vulcanici acidi sono caratterizzati da ampi ripiani piroclastici dai quali si innalzano, con fianchi piuttosto ripidi, i rilievi lavici cupoliformi (domi). È questa la morfologia predominante dell'area Cimina. Nei distretti vulcanici alcalino-potassici, caratterizzati da attività centrale (Vico e Colli Albani) si individuano, invece, edifici centrali ben sviluppati, con la tipica forma conica troncata nella porzione superiore e fianchi a debole pendenza. In corrispondenza delle aree sommitali si individuano ampie depressioni dovute a collassi calderici, alcune delle quali occupati da bacini lacustri. I distretti vulcanici alcalino-potassici caratterizzati da attività areale (Vulsini e Sabatini) hanno caratteri morfologici assimilabili a dei plateau e caratterizzati dalla presenza di molti centri di emissione ampiamente diffusi nell'area. Anche i distretti dei Vulsini e dei Sabatini sono contraddistinti dalla presenza di depressioni vulcano-tettoniche occupate da bacini lacustri (Lago di Bolsena e Lago di Bracciano), da depressioni calderiche eccentriche (Latera per i Vulsini, Sacrofano e Baccano per i Sabatini) e da numerosi centri di emissione diffusi e morfologicamente ben individuabili (coni di scorie). Il reticolo idrografico, che interessa i distretti vulcanici laziali, è fortemente caratterizzato dalla presenza di pareti vallive fortemente acclivi e gradonate e da fondi vallivi spesso appiattiti da fenomeni di sovralluvionamento.

- Dorsali appenniniche calcaree. Ad oriente della Pianura Pontina si individuano nettamente le dorsali calcaree fra loro parallele e allungate in direzione NordOvest-SudEst dei Monti Lepini-Ausoni-Aurunci e dei Monti Simbruini-Ernici e Prenestini. Queste dorsali calcaree, che rappresentano il resto dell'antica piattaforma carbonatica laziale-abruzzese, sono limitate spesso verso ovest da brusche scarpate di faglia e sono tagliate da valli sia longitudinali che trasversali rispetto alle strutture geologiche, impostate su linee tettoniche ad andamento appenninico ed antiappenninico; ne sono un esempio la valle dell'alto F. Aniene tra Jenne e Subiaco, la valle del F. Simbrivio e la valle di Carpineto Romano. Per tutta l'estensione di queste dorsali si possono osservare forme di modellamento carsico, anche molto accentuate. Il carsismo di superficie, infatti, è molto spinto, esplicandosi con tutti i tipi di strutture superficiali, sia a scala macroscopica che a scala mesoscopica. Sono molto diffusi i "bacini carsici", ampie depressioni dalle dimensioni dell'ordine del chilometro quadrato, con tipiche forme a conca o allungate, a volte costituite dalla coalescenza di diversi bacini minori. Il carsismo ipogeo è altrettanto sviluppato, con circuiti carsici di inghiottitoi, pozzi e gallerie, lunghi anche alcuni chilometri. Il reticolo idrografico in tali settori appenninici è scarsamente organizzato proprio a causa dell'intensa attività carsica che comporta la rapida cattura nel sottosuolo delle acque superficiali. Il pattern di drenaggio superficiale risulta comunque fortemente condizionato dai lineamenti tettonici principali che caratterizzano i bacini idrografici.
- Dorsali appenniniche calcareo-marnose. Sono costituite da litotipi della successione Umbro-Marchigiana-Sabina, in cui sono rappresentati, accanto ai litotipi calcarei, i litotipi calcareo-marnosi e marnosi. Le forme carsiche, seppur presenti, non sono così importanti come nel dominio geologico precedente, mentre assumono un ruolo predominante le forme dovute all'azione modellante delle acque superficiali. Si hanno quindi reticoli idrografici caratterizzati da un maggiore livello di organizzazione, i cui pattern, oltre ad essere fortemente controllati dalle linee strutturali, mostrano caratteri più tipici di bacini idrografici impostati su rocce a modesta permeabilità. Nei settori più elevati in quota dell'Appennino possono essere riconosciute, inoltre, forme di modellamento dovute all'azione morfogenetica dei ghiacciai che, nelle fasi fredde pleistoceniche, hanno avuto un importante sviluppo. Possono essere riconosciute, infatti, forme riconducibili a circhi glaciali, depositi morenici, valli ad U.

La Regione Lazio presenta un'elevata eterogeneità anche per quel che riguarda le forme derivanti da fenomeni franosi. La loro distribuzione spaziale è controllata in massima parte dalle specifiche condizioni geologiche, strutturali e geomorfologiche delle aree su cui insistono. In particolare nei settori appenninici, caratterizzati dalla presenza di litotipi calcarei e marnosi, sono prevalenti meccanismi riconducibili a crolli, debris flow e scorrimenti traslazionali. Nei distretti vulcanici,

invece, prevalgono nettamente i processi di crollo e ribaltamento. Per quel che riguarda i rilievi collinari sabbioso-argillosi dell'alto Lazio, essi sono fortemente caratterizzati da dissesti di versante, tra cui i principali meccanismi di rottura sono riconducibili a movimenti complessi, scorrimenti rotazionali, colamenti associati a fenomeni di erosione di tipo calanchivo.

3.2.3 Lineamenti idrografici

Il Lazio non costituisce un'unità dal punto di vista idrografico. I due sistemi principali della Regione sono: quello del fiume Tevere, per l'area settentrionale, e quello del Fiume Liri-Garigliano, per l'area meridionale.

Il bacino del F. Tevere ha una superficie totale di 17.200 km², di cui circa il 60% ricade nel Lazio. Il tratto iniziale ha un andamento appenninico (NW-SE) lungo il quale, a destra, raccoglie le acque dei versanti orientali degli apparati vulcanici Vulsino, Cimino, Vicano e Sabatino; mentre a sinistra, attraverso il F. Nera riceve il contributo consistente di alcune importanti strutture carbonatiche appenniniche (Monti Sabini, Monti Reatini, Monti Cicolani). Approssimativamente all'altezza della confluenza con il F. Farfa, il F. Tevere cambia direzione ed assume un andamento quasi trasversale al precedente (NNE-SSW); in questo tratto in destra idrografica riceve il drenaggio del reticolo dei versanti meridionali dell'apparato sabatino, mentre in riva sinistra è rilevante il contributo del F. Aniene che drena, oltre all'intera struttura simbruina, i versanti settentrionali dei Monti Prenestini e dei Colli Albani. Nella porzione settentrionale del bacino prevalgono affioramenti di litologie poco permeabili che determinano un regime fortemente legato al ruscellamento. Nel settore meridionale, lungo il confine regionale, il regime di portata del fiume cambia a causa dei contributi del sistema Nera-Velino che, drenando gli acquiferi delle strutture carbonatiche appenniniche, determina il notevole incremento e la sensibile stabilizzazione della portata. Più a valle la confluenza con il F. Aniene contribuisce ulteriormente all'aumento ed alla stabilizzazione del deflusso. Il reticolo idrografico che interessa i distretti vulcanici laziali è fortemente caratterizzato da un pattern di drenaggio per lo più centrifugo.

Il bacino del F. Liri-Garigliano ha una superficie complessiva di circa 4.900 km² e drena gran parte del Lazio meridionale. Il maggior affluente di sinistra è il fiume Sacco che scorre nella Valle Latina, a prevalente andamento NW-SE; il F. Liri in riva destra riceve prima il contributo del fiume Melfa e successivamente quello del fiume Gari, dopo la cui confluenza cambia direzione e prende il nome di Garigliano. Nell'insieme il reticolo di questa porzione di territorio ha uno schema di tipo rettangolare ed è controllato da lineamenti tettonici ad andamento appenninico (NW-SE) ed antiappenninico (NE-SW).

Partendo dal limite settentrionale e scendendo lungo costa gli altri corsi d'acqua principali del Lazio sono: F. Fiora (sup. totale del bacino pari a 826 km², solo parzialmente compreso nel territorio regionale), F. Marta (1.071 km²), F. Mignone (496 km²), F. Badino (708 km²).

3.2.4 Lineamenti vegetazionali

La Regione Lazio presenta un'elevata ricchezza floristica, sia per cause ecologiche che per fattori storici. Il profilo ecologico è quello di un'articolata fisiografia che vede anche la presenza di importanti rilievi prossimi al mare e che, come già ricordato, genera una grande varietà di tipi climatici. A questa, si aggiunge poi un'altra grande eterogeneità, questa volta di carattere

litologico e geomorfologico. Infine, la millenaria gestione del territorio da parte dell'uomo ha frammentato la già articolata vegetazione potenziale in un gran numero di stadi di sostituzione. Dal punto di vista delle cause storiche la posizione geografica del Lazio ha fatto si che la regione fosse interessata dal contributo di correnti floristiche di provenienza anche molto diversa (Blasi 1994).

Nel Lazio sono state definite 15 unità fitoclimatiche distribuite nella Regione Temperata, Temperata di transizione, Mediterranea di transizione e Mediterranea, caratterizzate in termini di parametri ed indici climatici, fisionomie vegetazionali, flora e serie di vegetazione (Blasi 1994).

Di seguito vengono riportate, per aree geografiche, le principali caratteristiche climatiche e vegetazionali.

- 1. Alte vette dei rilievi appenninici. Termotipo subalpino inferiore; ombrotipo iperumido inferiore; regione axerica fredda (sottoregione temperata fredda). Precipitazioni abbondanti (1.614 mm), anche con episodi estivi (277 mm), assenza di aridità estiva, freddo invernale molto intenso. Faggete e arbusteti a Juniperus alpina, Vaccinium myrtillus ed Arctostaphylos uvaursi.
- 2. Pedemonte dei rilievi più elevati; vette dei rilievi calcarei minori (provincie di Rieti, Frosinone e Latina) e del M.te Cimino. Termotipo montano inferiore; ombrotipo umido superiore/iperumido inferiore; regione mesaxerica/axerica fredda (sottoregione ipomesaxerica e temperata fredda). Precipitazioni abbondanti (1.247-1.558 mm), assenza di aridità estiva, freddo piuttosto intenso d'inverno. Faggete, boschi a dominanza di *Ostrya carpinifolia*, boschi con potenzialità per castagneti, querceti misti e leccete.
- 3. Valli intramontane e appenniniche. Termotipo collinare superiore (submontano); ombrotipo umido superiore; regione mesaxerica (sottoregione ipomesaxerica). Precipitazioni piuttosto elevate (1.161-1.432 mm) con piogge estive tra 140 e 200 mm, aridità estiva assente o poco accentuata, freddo molto intenso in inverno. Ostrieti, boschi misti, querceti a roverella. Potenzialità per il castagno e per il leccio su affioramenti litoidi.
- 4. Valli intramontane a Nord di Frosinone; pedemonte dell'Antiappennino meridionale; rilievi montuosi a sud di Frosinone; caldera vicina; Rocca di Papa; M.te Artemisio. Termotipo collinare superiore (submontano); ombrotipo iperumido inferiore; regione mesaxerica (sottoregione ipomesaxerica). Precipitazioni molto elevate (1.431-1.606 mm) con frequenti episodi estivi, aridità estiva assente, freddo intenso in inverno. Ostrieti, faggete, boschi misti, querceti con potenzialità per il castagno e il leccio.
- 5. Bassa Val Roveto; pedemonte degli Ernici e del M.te Cairo; versante Nordorientale dell'Antiappennino meridionale. Termotipo collinare inferiore/superiore; ombrotipo umido superiore/iperumido inferiore; regione mesaxerica (sottoregione ipomesaxerica). Precipitazioni abbondanti (1.234-1.463 mm) con piogge estive, aridità estiva debole, freddo più o meno intenso da novembre ad aprile. Ostrieti, faggete, leccete, querceti misti. Potenzialità per il castagno e la roverella.
- 6. Regione vulsina e vicina; Lazio Nord-occidentale; pedemonte sabino. Termotipo collinare inferiore/superiore; ombrotipo subumido superiore/umido inferiore; regione mesaxerica (sottoregione ipomesaxerica). Precipitazioni variabili tra 775 e 1.214 mm con piogge estive, aridità estiva debole, freddo prolungato da ottobre a maggio. Cerrete, querceti misti

(cerro, roverella, rovere, farnia), castagneti. Potenzialità per faggete termofile e lembi di bosco misto con sclerofille e caducifoglie su affioramenti litoidi.

- 7. Valle del fiume Tevere tra Orte e Monterotondo. Termotipo collinare inferiore/superiore o mesomediterraneo superiore; ombrotipo umido inferiore; regione mesaxerica (sottoregione ipomesaxerica). Precipitazioni annuali medio-alte (954-1.166 mm) con episodi estivi, aridità estiva non molto pronunciata, freddo intenso da ottobre a maggio. Querceti a roverella e cerro con elementi della flora mediterranea. Potenzialità per farnia, farnetto e leccio. Vegetazione a salici, pioppi e ontani.
- 8. Valle del fiume Sacco da Zagarolo ad Aquino. Termotipo collinare inferiore o mesomediterraneo medio; ombrotipo umido inferiore; regione xeroterica (sottoregione mesomediterranea). Precipitazioni costanti (1.098-1.233 mm), piogge estive scarse. Aridità estiva e subaridità variabili tra 1 e 2 mesi. Querceti a cerro, farnia e roverella con elementi della flora mediterranea ed un aumento del farnetto verso sud. Potenzialità per castagneti e boschi misti di *Fraxinus ornus, Ostrya carpinifolia, Carpinus orientalis*.
- 9. Maremma laziale interna e Campagna Romana. Termotipo mesomediterraneo medio o collinare inferiore; ombrotipo subumido superiore; regione xeroterica/mesaxerica (sottoregione mesomediterranea/ipomesaxerica). Precipitazioni annuali comprese tra 810 e 940 mm, aridità estiva presente da giugno ad agosto, freddo prolungato, ma non intenso da novembre ad aprile. Cerrete, querceti misti a roverella e cerro con elementi del bosco di leccio e di sughera. Potenzialità per boschi mesofili (forre) e macchia mediterranea (dossi).
- 10. Versanti Sud-occidentali dell'Antiappennino meridionale; piano di Pontecorvo e Cassino. Termotipo mesomediterraneo inferiore o termocollinare; ombrotipo umido inferiore; regione xeroterica (sottoregione mesomediterranea). Precipitazioni abbondanti (1.132-1.519 mm) con episodi estivi sporadici, aridità debole, freddo poco intenso da novembre a marzo. Querceti con roverella, leccete, boschi misti a Ostrya carpinifolia e Carpinus orientalis. Potenzialità per cerro, farnetto, castagno e sughera.
- 11. Regione tolfetana e Sabatina; Colli Albani. Termotipo mesomediterraneo medio o termocollinare; ombrotipo subumido superiore/umido inferiore; regione xeroterica (sottoregione mesomedietrranea). Precipitazioni abbondanti (822-1.110 mm), aridità non troppo intensa durante i mesi estivi, freddo poco intenso da novembre ad aprile. Cerrete, cerrete con roverella, leccete, castagneti, lembi di boschi mesofili a carpino bianco e nocciolo.
- 12. Agro Pontino. Termotipo mesomediterraneo inferiore; ombrotipo subumido superiore; regione xeroterica (sottoregione mesomediterranea). Precipitazioni da 842 a 966 mm, aridità estiva da maggio ad agosto, freddo non intenso da novembre ad aprile. Cerrete, querceti misti, boschi di sughera, boschi mesoigrofili, macchia mediterranea, leccete con alloro e corbezzolo.
- 13. Litorale e colline retrostanti della provincia di Viterbo e litorale della provincia di Roma. Termotipo mesomediterraneo inferiore; ombrotipo secco superiore/subumido inferiore, regione xeroterica (sottoregione termomediterranea/mesomediterranea). Precipitazioni scarse (593-811 mm), aridità estiva intensa da maggio ad agosto con un mese di subaridità

(aprile), freddo concentrato nel periodo invernale. Querceti con roverella, leccio e sughera, cerrete con farnetto, macchia mediterranea. Potenzialità per boschi con farnia e *Fraxinus oxycarpa* (forre e depressioni costiere).

- 14. Promontori del Lazio meridionale e piana di Fondi. Termotipo termomediterraneo superiore; ombrotipo umido inferiore/subumido inferiore; regione xeroterica (sottoregione termomediterranea). Precipitazioni elevate e molto variabili (tra 727 e 1.133 mm), aridità estiva pronunciata da maggio ad agosto, freddo poco accentuato e concentrato nel periodo invernale. Boschi di leccio e sughera, macchia mediterranea, querceti misti con roverella, carpino nero e carpino orientale.
- 15. Isole Ponziane. Termotipo termomediterraneo superiore; ombrotipo subumido inferiore, regione xeroterica (sottoregione termomediterranea). Precipitazioni scarse (649 mm) con apporti estivi sporadici, aridità estiva intensa (da aprile ad agosto), con due mesi di subaridità, freddo invernale quasi assente. Vari aspetti di macchia mediterranea con potenzialità per lembi di bosco a leccio e roverella.

La flora vascolare del Lazio (Anzalone 1984) conta 3.185 entità, più del 50% della flora italiana (5.599 secondo Pignatti 2002), distribuite in 898 generi e 161 famiglie. Le famiglie più rappresentate sono Compositae (370), Graminaceae (283), Leguminosae (270), Cruciferae (149), Caryophyllaceae (130), Umbelliferae (128) e Labiatae (103). Il genere più numeroso è Trifolium con 55 entità. Le specie rare e rarissime costituiscono il 29% del patrimonio floristico, quelle molto comuni il 30% e quelle comuni il 19,2%. Quindi quasi un terzo della flora è costituita da specie a diffusione limitata, a conferma del notevole valore della flora del Lazio. Anche la flora officinale, che raggiunge il 26,2%, è ampiamente rappresentata.

3.2.5 Uso del suolo

Qui di seguito è riportata in sintesi una classificazione delle varie tipologie di uso del suolo dell'intera Regione Lazio.

Il Lazio, a riprova della presenza di una attività agricola rilevante, presenta una distribuzione dei seminativi su una superficie di 564.751,54 ha, che corrisponde ad una percentuale del 32,82% del territorio regionale: netta è la prevalenza (23,13%) di quelli non interessati dalla presenza di infrastrutture permanenti di irrigazione (seminativi semplici non irrigui). La copertura boschiva è rilevante, con valori pari a 492.778,63 ha, corrispondenti al 28,64% della superficie complessiva. I boschi di latifoglie prevalgono nettamente (27,55%), mentre percentuali minime spettano alle superfici a conifere con lo 0,61% ed ai boschi di tipo misto con lo 0,48%. Le superfici occupate da colture permanenti (12,19% del territorio regionale) si collocano al terzo posto per ampiezza di copertura del suolo nel Lazio (209.783,97 ha); si tratta per lo più di oliveti che, a fronte di una superficie di circa 130.000 ha occupano, circa l'8% del territorio. Seguono in ordine di importanza frutteti con il 2,42% e vigneti con l'1,56%.

Una percentuale non trascurabile del territorio laziale risulta essere quella relativa alle aree caratterizzate da copertura vegetale arbustiva e/o erbacea in evoluzione naturale (9,8%). In questo ambito prevalgono rispettivamente i cespuglieti ed arbusteti e le aree a pascolo naturale e praterie di alta quota.

Le aree urbanizzate coprono complessivamente il 4,85% del territorio. Questa percentuale corrisponde ad una estensione di 83.457,74 ha, con una prevalenza non trascurabile degli insediamenti discontinui e sparsi rispetto a quelli continui. I prati stabili occupano una superficie di 51.487,07 ha (2,99% del territorio regionale), in larga misura concentrati in provincia di Roma (più di 25.000 ha). Le zone agricole eterogenee occupano il 2,23% del territorio, estendendosi per circa 38.382 ha. Ancora Roma risulta essere la provincia con la maggiore estensione di colture di questo tipo (12.266 ha). Le zone aperte, con vegetazione rada o assente, coprono una superficie pari a 35.721,08 ha; all'interno di questa classe assumono una certa rilevanza le zone interessate da presenza di aree con parziale copertura vegetale (aree con vegetazione rada propriamente dette), ricoprendo da sole l'1,79% del Lazio, rispetto alle aree con roccia nuda affiorante, aree calanchive, spiagge e falesie. Per ciò che riguarda gli insediamenti produttivi essi si collocano subito dopo, con una superficie complessiva di 30.664,27 ha (1,78% della superficie regionale), di cui 14.626,71 fanno capo alla classe insediamenti industriali o artigianali con spazi annessi. La provincia di Roma è quella che risulta avere il valore maggiore, con circa 18.747 ha di territorio dedicati alle attività produttive.

Le acque continentali coprono circa l'1,5% del Lazio, con una netta prevalenza dei bacini (1,28% di territorio, pari ad un'estensione di 22.049 ha) ed in particolare di quelli senza manifeste utilizzazioni produttive. Corsi d'acqua ed idrovie sono estesi per 3.576 ha (0,21 % di territorio).

La Provincia di Viterbo risulta, per la natura geologica del suo territorio, quella con la maggior percentuale di acque continentali. Infatti al suo interno ricadono due grandi specchi lacustri (Bolsena e Vico) e un ampio tratto del Fiume Tevere. Complessivamente nella Provincia di Viterbo, l'area occupata dagli elementi di questa classe è pari a 13.327,69 ha. Le zone verdi artificiali non agricole coprono una superficie pari a 9.309 ha, corrispondenti allo 0,54 % del territorio regionale. La Provincia di Roma è quella dove tali zone sono più diffuse, con una superficie pari a 7.088 ha. A tal proposito basti pensare al contributo del verde urbano della città di Roma, con i sui parchi e l'estensione dei suoi cimiteri.

Le aree estrattive occupano circa lo 0,5% del territorio, corrispondente ad una superficie di 8.226 ha. La Provincia di Roma risulta essere quella con la maggior percentuale di territorio adibito all'attività estrattiva (4.751 ha, pari allo 0,9 % del territorio).

Le aree marittime, occupano lo 0,08% del territorio regionale: pur essendo la Provincia di Roma quella con lo sviluppo litorale maggiore, è nella Provincia di Latina, caratterizzata dalla presenza di importanti laghi costieri (ad es. il Lago costiero di Sabaudia), che questa classe di uso del suolo è più rappresentata. Le zone umide interne e le zone umide marittime occupano porzioni di territorio regionale estremamente ridotte (ognuna circa lo 0,01%).

3.3 Il territorio della Sabina

3.3.1 Caratteri Geomorfologici

Il distretto vulcanico sabatino è caratterizzato dalla presenza di numerosi crateri di origine pleistocenica. L'attività di questi vulcani è stata prevalentemente di tipo esplosivo. Questo distretto inizia la sua attività attorno a 600.000 anni fa ed ha il suo cratere principale nel lago di Bracciano. Il vulcanismo mostra sin dall'inizio forti caratteri esplosivi e, dopo aver esordito nel settore orientale dell'area (edificio di Morlupo-Castelnuovo di Porto), si sposta verso ovest edificando l'imponente struttura di Sacrofano, forse la più importante dei Sabatini, per durata
dell'attività e volumi di materiali eruttati (le colate piroclastiche sono presenti sino a più di 40 km dal centro di emissione, e le rinveniamo tuttora in affioramento nel settore nord della città di Roma). Attenuatosi il centro di Sacrofano, l'attività dei Sabatini si riposiziona nel settore orientale, con i tuff-ring di Monte Razzano e Monte Sant'Angelo ed, infine, con il centro di Baccano, la cui attività cessa intorno ai 40.000 anni fa. Il distretto è caratterizzato da una successione calcarea e calcareo-marnosa meso-cenozoica di mare evolvente da poco a molto profondo, affiorante nei rilievi omonimi e nell'alto reatino. Nei settori prossimi alla valle del Tevere, della Sabina o dell'alta pianura romana, con affioramento dei depositi argillo-sabbiosi pliocenici, tendono a manifestarsi prevalentemente fenomeni erosivi superficiali, sia areali che concentrati, che determinano una franosità diffusa. Nella piana alluvionale tiberina, l'evoluzione morfologica è condizionata, oltreché dagli eventi di piena del Tevere, essenzialmente dall'attività antropica.

3.3.2 Caratteri Vegetazionali e faunistici

La Sabina può essere divisa in tre ambienti principali:

• Fondo valli, caratterizzati da fiumi, torrenti e piccole zone umide. Questo habitat è stato profondamente modificato dalle attività antropiche: nel passato i letti dei fiumi sono stati deviati e le zone umide bonificate, lasciando liberi i fondo valli per le coltivazioni. L'attività antropica non sempre è stata del tutto negativa: ad esempio nella Valle del Tevere la costruzione di una diga idroelettrica ha consentito la formazione di un'importante zona umida (che ha portato all'istituzione della Riserva Naturale Tevere Farfa). Gli altri fiumi della Sabina, come il Farfa e l'Aia sono molto più piccoli e passano dolcemente per le colline tipiche della regione per confluire nel Tevere. La presenza, nelle zone a monte di questi fiumi, di specie indicatrici come la trota, i granchi e i gamberi d'acqua dolce è un segnale di buona qualità dell'acqua. Lungo le sponde sono presenti salici, pioppi e altre specie ripariali che, oltre a costituire un essenziale rifugio per molte specie animali, rappresenta anche una naturale protezione delle sponde dall'erosione.

Piante tipiche dei fiumi e delle zone umide: Salice bianco (*Salix alba*), Salice caprino (*Salix caprea*), Salice rosso (*Salix purpurea*), Pioppo nero (*Populus nigra*), Pioppo bianco (*Populus alba*), Sambuco (*Sambucus nigra*), Equiseto (*Equisetum spp., Juncus acutus*), Cannuccia di palude (*Phragmites communis*), Farfaracchio (*Petasites hybridus, Orobanche spp.*), Capelvenere (*Adiantum capillus-veneris*), Felci (*Polypodiaceae spp., Veronica beccabunga*), Lenticchia d'acqua (*Lemna minor*), Canapa acquatica (*Eupatorium cannabinum*, Gamberaja *Callitriche spp.*), Sedano d'acqua (*Apium nodiflorum*).

Animali tipici dei fiumi e delle zone umide: Trota fario (salmone trutta), Vairone (Leuciscus soufia), Gambero di fiume (Austropotamobius pallipes), Rana italiana (Rana italica), Rana verde (Rana esculenta), Biscia dal collare (Natrix Natrix), Gallinella d'acqua (Gallinula chloropus), Merlo acquaiolo (Cinclus cinclus), Martin pescatore (Alcedo atthis), Airone grigio (Ardea lineria), Ballerina gialla (Motacilla lineria).

• Zona Collinare, con coltivazioni non intensive, siepi e piccole aree boscose. Gran parte del territorio sabino si estende sulle colline, tra oliveti, vigneti e campi aperti usati per il pascolo o seminati con erba medica, granoturco e girasoli. Le zone più ripide, difficilmente

coltivabili, sono invece solitamente lasciate a bosco. Campi coltivati, strade e fiumi sono spesso delimitati da filari di alberi e siepi, costituendo un parziale rifugio per la fauna selvatica. Molte specie sono adattate alla presenza umana, traendone anche vantaggio: le civette, i gechi, i pipistrelli e le volpi sono comuni nelle vicinanze dei casali, e le rondini usano i centri abitati per nidificare.

Gli oliveti sono poco impattanti sull'ambiente e i campi vengono fresati uno o due volte l'anno permettendo la sopravvivenza di molti insetti e piante spontanee. Uno degli elementi costanti del paesaggio della Sabina è la roverella (*Quercus Pubescens*) che si trova spesso lungo le strade.

Piante tipiche delle zone collinare: Roverella (*Quercus pubescens*), Cerro (*Quercus cerris*), Olmo (*Ulmus glabra*), Corniolo (*Cornus mas*), Vitalba (*Clematis vitalba*), Carpino (*Carpinus orientalis*), Albero di giuda (*Cercis siliquastrum*), Ginestra (*Spartium junceum*).

Animali tipici delle zone collinare: Volpe (*Vulpes vulpes*), Riccio (*Erinaceus europeus*), Talpa (*Talpa spp.*), Lepre (*Lepus europaeus*), Pipistrello albilombato (*Pipistrellus kuhlii*), Lucertola muraiola (*Podarcis muralis*), Geco comune (*Tarentola mauritanica*), Ramarro (*Lacerta viidis*), Civetta (*Athene noctua*), Ballerina bianca (*Motacilla alba*).

• Zona montuosa, caratterizzata dalla foresta e dal pascolo alto. Le zone più alte o isolate della Sabina sono per lo più coperte da boschi, molti dei quali tagliati a rotazione secondo pratiche secolari. La specie dominante di queste foreste è il Leccio, *Quercus ilex*, una pianta sempreverde come moltissime altre di questa fascia vegetazionale. Questa tipologia di piante è ben adattata agli ambienti aridi tipici della zona Mediterranea. Verso le cime delle montagne e sui versanti a nord dei Monti Sabini predomina il bosco caducifoglio , con prevalenza di faggi e querceti misti. La foresta è grande e si estende lungo la dorsale degli Appennini, e viene lasciata relativamente indisturbata; alcune zone sono diventate riserve naturali negli ultimi anni e per questo motivo sono presenti molte specie di animali. Tra questi vi è persino il Lupo la cui presenza, non stanziale, ma solo di passaggio, è stata rilevata con certezza a seguito di studi specifici in queste aree.

Piante tipiche della zona montuosa: Leccio (*Quercus ilex*), Corbezzolo (*Arbutus unedo*), Faggio (*Faggus sylvatica*), Alloro (*Laurus nobilis*), Acero (*Acer campestre*), Ginepro (*Juniperus oxycedrus*), Viburno (*Viburnum tinus*), Timo (*Thymus vulgaris*), Erica (*Erica arborea*), Asparago (*Aspargus acutifolius*).

Animali tipici della zona montuosa: Istrice (Hystrix cristata), Tasso (Meles meles), Cinghiale (Sus scropha), Scoiattolo (Sciurus vulgaris), Faina (Martes foina), Donnola (Mustela nivalis), Picchio verde (Picus viridis).

Molti di questi ambienti sono stati profondamente influenzati dall'attività antropica, ma il loro impatto è stato limitato dalla natura del paesaggio stesso, in cui la presenza di zone ripide e difficilmente coltivabili ne ha impedito la coltivazione lasciando crescere una vegetazione spontanea, importante habitat per molte specie animali e vegetali.

3.4 Il paesaggio di Viterbo

3.4.1 Caratteri Geomorfologici

Il paesaggio fisico della provincia di Viterbo è il risultato di un lungo periodo di attività vulcanica sviluppatosi dalla fine del Pliocene fino a oggi.

Nel territorio è possibile distinguere tre distretti geologici principali:

- Distretto vulcanico tolfetano: caratterizzato da sedimenti sabbioso-argilloso-ghiaiosi nelle zone meno elevate, sovrastate dai Monti della Tolfa, complesso vulcanico denominato Tolfa-Ceriti-Manziana. Il distretto è inoltre caratterizzato da rocce a chimismo acido. In migliaia di anni i materiali eruttati si sono sedimentati dando luogo a spesse coltri di roccia, tufo, nenfro e peperino, che caratterizzano gran parte della geologia della Tuscia.
- **Distretto vulcanico vulsino:** si trova a nord di Viterbo ed ha il suo centro nel bacino lacustre di Bolsena, originatosi per un collasso. Un'altra caldera è nei pressi della vicina Montefiascone. Il distretto vulsino presenta rocce con rilevanti quantità di potassio e relativamente più recenti. L'attività di questi vulcani è stata prevalentemente esplosiva.
- Distretto vulcanico cimino-vicano: L'area vulcanica cimina, sovrastata dalla vetta del Monte Cimino (1.053 metri), si trova a sud di Viterbo. L'attività eruttiva è stata caratterizzata dalla fuoriuscita di lave viscose acide dalle fratture della crosta terrestre che hanno dato luogo a dei rilievi spesso assai ripidi. L'edificio vulcanico principale è quello di Vico, oggi occupato dal lago omonimo. Il bacino lacustre occupa il fondo di una vasta caldera originatasi per collasso.

In tutta l'area sono presenti inoltre fenomeni di "vulcanismo residuo", infatti si possono notare numerose sorgenti termominerali e fenomeni di fuoriuscita di gas, soprattutto anidride carbonica e anidride solforosa.

La rete idrografica della zona è molto ramificata. I fiumi principali sono: il Fiora, che nasce in Toscana in provincia di Siena e sfocia nel Tirreno presso Montalto di Castro; il Marta, che ha origine nel lago di Bolsena, si arricchisce delle acque del Biedano e sfocia nel mar Tirreno presso Tarquinia; il Mignone, che nasce nel territorio di Vejano, riceve le pulite acque della Vesca sfociando nel Tirreno presso Civitavecchia.

Partendo dal limite settentrionale e scendendo lungo costa i corsi d'acqua principali sono: F. Fiora (sup. totale del bacino pari a 826 km2, solo parzialmente compreso nel territorio regionale), F. Marta (1.071 km²), F. Mignone (496 km²), F. Badino (708 km²).

3.4.2 Caratteri Vegetazionali e Faunistici

Il viterbese può essere diviso in quattro ambienti principali:

1) La fitta rete di **forre** più o meno profonde, scavate negli strati di roccia vulcanica dai corsi d'acqua, ospita una vegetazione mesofila, legata cioè alle particolari condizioni

microclimatiche di forte umidità e scarso soleggiamento. Tipici di questo ambiente sono le felci (capelvenere, felce maschio, lingua cervina e la rara *Osmunda regalis*), gli ontani, i carpini bianchi, i noccioli, il sambuco, talvolta anche i faggi, sebbene il loro limite altimetrico sia attorno agli 800 metri. La numerosa presenza di specie mesofile, rispetto al contesto fitoclimatico, è favorita anche dalle condizioni di ritenzione idrica del sottosuolo: il tufo e le altre rocce vulcaniche, assai porose, trattengono rilevanti quantità d'acqua favorendo lo sviluppo di tale vegetazione.

- 2) Sui pianori sovrastanti le valli e le profonde forre, spesso interessati da coltivazioni a cereali o lasciati incolti per il pascolo, prospera una vegetazione xerofila, legata cioè ad un clima più caldo ed asciutto. Tipici sono i lecci, le roverelle e arbusti e cespugli della vegetazione mediterranea, quali eriche, fillirea, alaterno e cisto.
- 3) Un altro ambiente che si riscontra facilmente sono i numerosi prati-pascoli, su cui da secoli pascolano allo stato brado soprattutto bovini ed equini della razza maremmana. Questo tipo di allevamento ha generato nel tempo una prateria secondaria, una prateria cioè creata non solo dalle condizioni pedologiche e climatiche, ma anche dagli animali stessi. L'azione di pascolamento dei grandi erbivori ha infatti selezionato alcune piante, come ad esempio i numerosissimi arbusti spinosi.
- 4) Inoltre vi è la presenza di numerosi boschi, composti prevalentemente da cerri (*Quercus cerris*) e roverelle (*Quercus pubescens*) ceduati o avviati all'alto fusto e noccioli (*Corylus avellana*). Le pendici dei rilievi cimini e vicani sono ricoperte da una vegetazione legata alla facies forestale-continentale, ad un clima cioè relativamente fresco ed umido, in cui prosperano esemplari di faggio (*Fagus sylvatica*) e carpino (*Carpinus* sp.).

Interessanti, dal punto di vista vegetazionale e floristico, sono il Lago di Bolsena e quello di Vico che conservano una folta copertura di vegetazione igrofila, con la presenza di canneti in cui trovano riparo numerose specie di uccelli, di passo e stanziali. Di grande valore naturalistico risulta essere anche l'ambiente sommerso lacustre.

Piante tipiche del viterbese: il Rovo e la Marruca (*Paliurus spina christi*), Prugnolo (*Prunus spinosa*), Pero mandorlino (*Pyrus amygdaliformis*), Biancospino (*Crategus* sp.), Cerri ad alto fusto (*Quercus cerris*), Carpini (*Carpinus* sp.), Castagno (*Castanea sativa*), Nocciolo (*Corylus avellana*), Faggio (*Fagus sylvatica*). Asparagi (*Asparagus acutifolia e A. tenuifolia*), More di rovo (*Rubus* sp.), Corniolo o crognolo (*Cornus mas*), Corbezzolo (*Arbutus unedo*), Nespola selvatica (*Mespilus germanica*). Funghi: i Porcini (*Boletus edulis* ed *aureus*), i Galletti (*Cantharellus cibarius*), l'Ovolo buono (*Amanita caesarea*).

Animali tipici del viterbese: i corsi d'acqua perenni sono l'habitat ideale per numerose specie di anfibi, tra cui i rari Tritone crestato (*Triturus cristatus*), Salamandrina dagli occhiali (*Salamandrina terdigitata*), Ululone a ventre giallo (*Bombina variegata*); inoltre è da annotare la presenza del Gatto Selvatico (*Felis silvestris*), Nutria (*Myocastor corpus*), Istrice (*Hystrix cristata*), Tasso (*Meles meles*).

3.5 La Riserva Naturale Selva Del Lamone

3.5.1 Caratteri geomorfologici

La maggior parte delle rocce affioranti della Riserva Naturale Selva del Lamone sono di origine vulcanica con un età media variabile da 800.000 a 50.000 anni fa (Pleistocene). I corpi lavici più estesi sono riconducibili a tefriti leucititiche e ad olivinlatiti. Le lave si presentano alla base compatte e diventano microvescicolate nella parte alta, di colore grigio scuro con fenocristalli di leucite. In corrispondenza del Ponte di Stenzano si ha una variazione di colore dal rosso al grigio chiaro. Le lave maggiormente rappresentate sono quelle derivate dall'attività effusiva del centro eruttivo della Dogana, che verso Sud-Ovest ha formato il plateau lavico della Selva. La parte basale di essa è molto compatta, mentre nella parte alta si ha una struttura a blocchi di varie dimensioni, con una colorazione che va dal grigio scuro al nero.

A Semonte e alla Dogana si trovano due caratteristici coni costituiti da strati alternati di lapilli, scorie e brandelli lavici. Piroclastiti incoerenti, terreni originatisi in modi e tempi diversi, accomunati da una scarsa coesione, affiorano nella parte settentrionale del Lamone (Pian di Lance) e in quella meridionale (Campo della Villa).

Travertini, dovuti a precipitazione chimica di acque idrotermali, sono presenti in piccoli affioramenti nei pressi del Campo del Carcano, allineati in direzione Nord-Ovest Sud-Est coincidente, probabilmente, con qualche fessura in prossimità della cinta calderica. Alluvioni antiche e recenti sono localizzate lungo la valle dell'Olpeta in località Stenzano e tra Santa Maria di Sala e Acquaforte.

Ma l'elemento che appare più evidente è il plateau lavico che, estendendosi da Sud-Ovest a Nord-Est per tutto il territorio della Riserva, costituisce un uniforme altipiano che separa il più articolato paesaggio circostante. Per tutta l'estensione del bosco si è accumulata una massa enorme di pietre laviche grigie che, accatastatesi in maniera variegata, ha dato origine a piccole alture caratteristiche, note localmente con il nome di murce, che si innalzano su avvallamenti bui, ricchi di anfratti e inghiottitoi. In alcuni casi (Rosa Crepante, Pila del Sambuco ed altri) questi assumono la conformazione di veri e propri anfiteatri di lava.

3.5.2 Caratteri vegetazionali

La maggior parte del territorio della Riserva Naturale Selva del Lamone è caratterizzata da ammassi di pietre grigie, coperte da muschi e licheni, che permettono solo in modo discontinuo l'accumulo di suolo fertile tra gli interstizi dei massi e negli avvallamenti. In questi ultimi, soprattutto durante l'inverno e la primavera, si raccolgono le acque piovane, dando origine a piccoli stagni chiamati localmente "Lacioni".

In alcune aree della Riserva, in cui la ridotta presenza di pietre ha permesso, fino a poco tempo fa, diverse attività agricole (i cosiddetti Roggi), oggi va sviluppandosi una vegetazione prevalentemente costituita da arbusti spinosi. Fatta eccezione per poche zone talmente impervie in cui sono presenti alberi secolari, la maggior parte della zona è stata, ed è tutt'ora, soggetta a gestione forestale.

La tipologia di bosco maggiormente rappresentata nella Selva del Lamone è quella della cerreta: querceti a dominanza di *Quercus cerris*. Nella parte occidentale sono ancora presenti residui di

lecceta, bosco misto di latifoglie e la pineta; in quella orientale permangono tracce di faggeta. Le essenze quercine (*Quercus cerris* e *Q. pubescens*) vanno a costituire il piano dominante della vegetazione. Il Leccio (*Quercus ilex*) si distribuisce soprattutto nella parte occidentale insieme all'Acero minore, l'Acero campestre, l'Orniello, il Cerro e il Carpino nero. Qualche raro esemplare di cerro-sughera (*Quercus crenata*) si può incontrare nelle parti più interne del bosco. Nelle zone più aspre e tormentate, in cui l'abbondante presenza di massi lavici impedisce la formazione di ampi strati di terreno fertile, molte altre specie arboree riescono a competere con le querce e ad assumere anche dimensioni imponenti (Baragliu *et al.* 1993).

Piante tipiche della R. N. Selva del Lamone (Scoppola et al. 1996): Acero minore (Acer monspessulanum), Acero oppio (A. campestre), Orniello (Fraxinus ornus), Carpino nero (Ostrya carpinifolia), Carpino bianco (Carpinus betulus), Bagolaro (Celtis australis), Faggio (Fagus sylvatica), Sambuco comune (Sambucus nigra), Nespolo (Mespilus germanica), Pero selvatico (Pyrus pyraster). Tra le essenze minori, costituenti lo strato arbustivo della Selva, sono presenti in quantità notevoli Prugnolo (Prunus spinosa), Corniolo (Cornus mas), Sanguinello (C. sanguinea), Biancospino (Crataegus monogyna) e Biancospino selvatico (C. oxyacantha) Agrifoglio (Ilex aquifolium), Berretta da prete (Euonymos europaeus), Ginestra odorosa (Spartium junceum), Edera (Hedera elix); tra i rami delle querce antiche è facile scorgere Vischio quercino. (Loranthus europaeus), una pianta epifita ed emiparassita rara nel Lazio. Anemone dell' appennino (Anemone appennina). Linaria purpurea, protetta nel Lazio, Buglussoides purpurocarulea, Helycrysum italicum, Ajuga reptans, A. chamaepitys, Origanum vulgare, Teucrinum chamaedrys, Felci come Phyllitis scolopendrium, Adiantus capillus-veneris, Asplenium trichomanes. Nei "Lacioni", si trovano interessanti esempi di flora acquatica fra cui diverse specie di Callitriche e la rara Veronica scutellata. Agli ambienti umidi è legata anche la rarissima felce Ophioglossum vulgatum, Orchideacee diffuse nella Selva sono Orchis morio, O. papillonacea, Serapias vomeracea, Anacamptis pyramidalis, Himanthoglossum hircinum ssp. adriaticum, Neottia nidus-avis e Limodorum abortivum. In una zona travertinosa del Lamone sono state individuate Orchis fragans, *Ophrys bertolonii* e Serapias lingua. Lungo l'Olpeta ritroviamo Orchis provincialis.

3.5.3 Caratteri faunistici

La fauna presente nella Selva del Lamone costituisce uno dei suoi aspetti più peculiari e uno dei fattori che giustificano la salvaguardia e la regolamentazione dell'uso di questa foresta. Le caratteristiche vegetazionali e morfologiche della Selva, ricca com'è di anfratti rocciosi e di alberi secolari, offrono una notevole quantità e varietà di rifugi sfruttabili da un'altrettanto ricca fauna selvatica (Arcà 1993).

Fauna della R.N. Selva del Lamone: Volpe (*Vulpes vulpes*), Martora (*Maties martes*), Faina (*Martes foina*), Puzzola (*Mustela putorius*), Donnola (*Mustela nivalis*), II rarissimo gatto selvatico (*Felis silvestris*), Lontra (*Lutra lutra*), il mammifero oggi minacciato di maggiore estinzione in Italia, Tasso (Meles meles), Lepre (*Lepus europaeus*), Riccio (*Erinaceus europaeus*), listrice (*Hystrix cristata*), Ghiro (*Glis glis*), Scoiattolo (*Sciurus vulgaris*), Topo Quercino (*Eliomys quercinus*), Moscardino (*Muscardinus avellanarius*). L'avifauna è quella tipica dei boschi cedui di bassa collina. Sono presenti: Poiana (*Buteo buteo*), Sparviero (*Accipiter nisus*), Falco pecchiaiolo (*Pernis apivorus*), Lodolaio (*F. subbuteo*), la rara Albanella minore (*Circus pygargus*), Fagiano (*Phasianus colchicus*), Starna (*Perdix perdix*), Tortora (*Streptopelia turtur*), Beccaccia (*Scolopax rusticola*), Cornacchia

(Corvus corone cornix), Gazza (Pica pica), Taccola (Corvus monedula), Upupa (Upupa epops), Allocco (Strix aluco), Barbagianni (Tyto alba), Civetta (Athene noctua), Gufo comune (Asio otus), Picchio verde (Picus viridis), Picchio rosso maggiore (Dendrocopos major), Mezzano (D. medius), Picchio muratore (Sitta europaea), Ghiandaia (Garrulus glandarius), Rampichino (Certhia brachydactyla), Cuculo (Cuculus canorus), Storno (Sturnus vulgaris), Codibugnolo (Aegitholos caudatus) e molti rappresentanti dei Silvidi (capinera, luì, ecc...) e dei Paridi (cincie), oltre a tutti gli altri passeriformi di bosco. Ramarro (Lacerta viridis), Lucertola campestre (Podarcis sicula), Lucertola muraiola (P. muralis), Luscengola (Chalcides chalcides), Orbettino (Anguis fragilis), Biacco (Coluber viridiflavus), Biscia dal collare (Natrix natrix), Cervone (Elaphe quatuorlineata), Vipera comune (Vipera aspis) e la testuggine comune. Per gli anfibi tra le altre specie si ricordano: Rana agile (Rana dalmatina), Rospo comune (Bufo bufo), Rospo smeraldino (B. viridis), Tritone crestato (Triturus cristatus), Tritone punteggiato (T. vulgaris). Di particolare interessanti sono alcuni Coleotteri Nitidulidi, in particolare Xenostrongilus lateralis, entità a diffusione siculo-magrebina, individuato nei pressi del fiume Olpeta; Meligethes bucciarellii, rinvenuto nella Selva, località tra le più settentrionali del suo areale di diffusione; rilevante anche la presenza del Coleottero Cateretide Brachypterolus vestitus per il quale il Lamone rappresenta la stazione più meridionale del suo areale di diffusione. Nell'Olpeta e nei suoi affluenti è segnalata la presenza del gambero di fiume (Austropotamobius pallipes italicus); mentre in alcuni lacioni è stata segnalata la presenza di un crostaceo acquatico il Chirocephalus diaphanus.

3.6 Disegno sperimentale

Come già specificato questa tesi è parte di un progetto di ricerca sull'ecologia, sulla dinamica di popolazione e sulle strategie ottimali di conservazione dei piccoli mammiferi in paesaggi frammentati (Mortelliti *et al.* 2011; Santarelli 2011; Mortelliti 2012 *submitted*). L'approccio seguito per il disegno sperimentale si basa sull'utilizzo dei modelli di popolazione spazialmente espliciti (SEPM) ed è stato suddiviso in 4 fasi:

- 1) Raccolta parametri demografici;
- 2) Elaborazione del modello di probabilità di presenza;
- 3) Parametrizzazione del modello di popolazione spazialmente esplicito (SEPM);
- 4) Analisi di vitalità delle popolazioni con scenari di non cambiamento e scenari di cambiamento dell'habitat.

3.6.1 Fase 1: raccolta parametri demografici

La raccolta dei dati demografici ha previsto: la selezione delle aree campione, la costruzione delle griglie e la marcatura e raccolta dei dati individuali.

I paesaggi campionati sono stati scelti principalmente in relazione a: 1) tipologia vegetazionale, per la maggior parte caratterizzata da querceto misto di caducifoglie (*Quercus cerris* e *Quercus pubescens*), idonea per ospitare specie tipicamente forestali come il moscardino; 2) elevato livello di perdita di habitat (meno del 20% di copertura forestale); 3) elevato grado di frammentazione (intesa come suddivisione dell'habitat). Il paesaggio della Riserva Naturale Selva del Lamone è considerato come area di controllo, in quanto caratterizzato da una copertura boschiva pressoché continua (continuum ambientale non frammentato).

All'interno dei paesaggi la selezione dei patch da campionare è avvenuta dapprima mediante l'individuazione di habitat potenzialmente idonei (querceti misti di caducifoglie) sulle ortofoto in scala 1:10.000 della Regione Lazio, fornite dall'Agenzia Regionale Parchi, utilizzando il software ArcView 3.3 (ESRI ©); successivamente ne è stata verificata l'idoneità attraverso vari sopralluoghi in campo. Il processo di selezione è stato pianificato in modo tale che: all'interno dello stesso paesaggio ci fosse un gradiente di dimensioni dei frammenti da campionare, ogni patch presentasse una sua replica spaziale sia all'interno del singolo paesaggio che tra paesaggi differenti.

Sono state quindi selezionate 28 aree campione:

- 11 frammenti boschivi nel comune di Fara Sabina, provincia di Rieti, Lazio;
- 9 frammenti nei comuni di Viterbo e di Montefiascone, provincia di Viterbo, Lazio;
- 8 aree campione nella Riserva Naturale Selva del Lamone, provincia di Viterbo, Lazio.

La demografia del moscardino è stata studiata mediante l'utilizzo di cassette nido (nest-box). L'efficacia delle cassette nido per la contattabilità della specie è stata già da tempo indagata da vari autori (Bright *et al.* 2006; Bright & Morris 1996; Morris *et al.* 1990; Sorace *et al.* 1998). La loro somiglianza con le cavità naturali degli alberi infatti le rende dei siti di nidificazione preferenziali per il moscardino, ideali quindi per studiarne la demografia.

Il numero totale di cassette nido utilizzate sono state 706, di cui 208 nella Sabina, 210 nel paesaggio di Viterbo e 288 nella Riserva Naturale Selva del Lamone. Le cassette nido sono state disposte a griglia con una distanza di 40 metri l'una dall'altra per un totale di 6 cassette per ettaro di superficie. Questi valori sono stati stabiliti in base alle dimensioni medie degli home range (Bright & Morris 1992, 1996), dei valori di densità attesi e da precedenti campionamenti condotti nell'Italia centrale (Mortelliti *comm. pers.*). Nei patch di dimensioni inferiori a 10 ha l'intera area è stata campionata, in quelli di dimensioni maggiori sono state messe in posto delle griglie quadrate di 36 cassette. Per ogni cassetta è stato assegnato un numero identificativo e sono state registrate le coordinate geografiche mediante l'ausilio di un GPS. Si è quindi proceduto alla realizzazione di un database cartografico in cui ogni cassetta nido è stata georeferenziata mediante l'utilizzo del software ArcGis 9.3 (ESRI ©).

La fase di preparazione ha comportato la costruzione di circa 400 cassette nido, in legno, di dimensioni 10x18x21 cm, con un foro di entrata di 3,5 cm di diametro delimitato ai lati da due spessori di legno; mentre le rimanenti cassette sono state fornite dall'Agenzia Regionale Parchi. In seguito le nest-box sono state fissate sui tronchi degli alberi mediante l'utilizzo di filo metallico, ad un'altezza che va da 1,5 metri a 2,5 metri, avendo l'accortezza di rivolgere il foro d'ingresso verso il tronco per ridurre la possibilità di essere utilizzate da altre specie non target di questa ricerca. Le cassette, prima di essere state posizionate, sono state "sporcate", e quindi strofinate, con terra, foglie e muschi che si trovavano nel posto per far assumere il più possibile un odore naturale.

La fase di costruzione delle griglie è stata avviata nel mese di gennaio 2010 e si è conclusa nel mese di maggio. I controlli delle cassette nido, effettuati con cadenza mensile, sono iniziati nel mese di maggio 2010 e si sono conclusi nel mese di novembre dello stesso anno (Tab. 3.1). Tutti i patch di un intero paesaggio sono stati controllati in media in 2 giorni di tempo.

Paesaggi	Date controlli
	03/05 - 11/06 - 11/07 - 12/08 - 17/09 - 13/10 -
Sabina	16/11
	07/05 - 16/06 - 17/07 - 17/08 - 15/09 - 16/10 -
Viterbo	13/11
	20/05 - 18/06 - 29/07 - 01/09 - 07/10 - 30/10 -
Lamone	25/11

Tab. 3.1. Controlli alle cassette nido. Nella prima colonna sono indicati i nomi dei paesaggi, nella seconda il calendario dei controlli effettuati per ciascun paesaggio.

Gli individui di moscardino, con un peso superiore o uguale a 13 g, sono stati marcati mediante l'utilizzo di PIT (Passive Integrated Transponder) modello 8x2 mm 134,2 KHz ISO. Questi sono stati impiantati nello strato sottocutaneo degli individui mediante l'utilizzo di siringhe modello MK7. Grazie alle onde radio a bassa frequenza emesse da un lettore (modello Pocket Reader EX) si induce il PIT a trasmettere al lettore stesso un codice alfanumerico a dieci caratteri che è servito ad identificare in maniera univoca gli individui.

Durante le operazioni di marcatura è stato necessario sedare gli individui con etere etilico prima dell'impianto del PIT. Una volta finita l'operazione gli individui venivano riposti all'interno della cassetta nido, ostruendone il foro di ingresso, per permettere il pieno recupero delle facoltà motorie che avveniva, in media, dopo 6 ore dall'operazione di marcatura.

Per gli individui di peso inferiore a 13g si è voluto usare una tecnica di marcatura meno invasiva, l'ear clipping, che consiste nel taglio di un frammento del padiglione auricolare dell'individuo seguendo appositi codici. In condizioni del tutto eccezionali si è ricorso anche all'utilizzo di un metodo di marcatura temporaneo, il fur clipping, che consiste nell'eliminazione di porzioni di pelliccia in posizioni prestabilite del corpo dell'animale.

I dati presi per ogni individuo catturato sono stati:

- Data
- Paesaggio, nome del patch (o della griglia) e numero della cassetta nido
- Numero identificativo dell'individuo (codice alfanumerico)
- Peso, misurato con una pesola a molla (precisione di 0.5g)
- Sesso, determinato in base alla distanza dei fori ano-genitali
- Stadio di sviluppo (juvenile, sub-adulti, adulti)
- Prelievo campione di tessuto per analisi genetiche
- Prelievo parassiti (zecche)

Nei casi in cui veniva trovata un esemplare femmina in fase di allattamento con relativi cuccioli, per ciascuno di questi, venivano annotati anche i seguenti dati:

- Numero di cuccioli
- Occhi chiusi o aperti
- Presenza o meno di pelliccia
- Peso
- Sesso (dove riconoscibile)

• Prelievo campione di tessuto per analisi genetiche (effettuato solo su individui di dimensioni tali da non comportare alcun rischio).

3.6.2 Fase 2: elaborazione del modello di probabilità di presenza

Per determinare il modello di idoneità ambientale, necessario per qualsiasi tipo di analisi attraverso i SEPM, è necessario ottenere una funzione di probabilità di presenza che relazioni le caratteristiche dell'habitat ad una qualche misura di idoneità ambientale della specie studiata. Questo avviene comunemente tramite l'utilizzo di procedure statistiche che fanno ricorso ai modelli di regressione logistica (Pearce *et al.* 1994; Mills *et al.* 1993). Si utilizzano dati di presenza/assenza delle specie, come variabile dipendente, e le caratteristiche dell'habitat, come l'insieme di variabili indipendenti per la determinazione del modello di presenza.

Tra i principali effetti del processo di frammentazione sui pattern di distribuzione delle specie vi è il decremento nelle dimensioni dei patch e l'aumento dell'isolamento dei frammenti boschivi (Lindenmayer & Fischer 2007; Fahrig 2003). Questi effetti pongono le basi per la maggior parte delle misure quantitative del grado di frammentazione dell'habitat (McGarigal *et al.* 2002). E' stata quindi calcolata la probabilità di presenza del moscardino in funzione di un certo numero di variabili predittive. Il set di variabili, che si è scelto di utilizzare per predire la probabilità di presenza, si basa sulle caratteristiche geometriche e di isolamento/connessione di ciascun patch. Le variabili considerate sono:

- Dimensioni dei patch. Le dimensioni dei patch sono state calcolate attraverso l'estensione "Patch Analyst 2.2" (Elkie *et al.* 1999) di ArcView 3.3 (ESRI ©). La grandezza del patch è una delle variabili predittive più utilizzate negli studi di frammentazione, in quanto svolge un ruolo cruciale nella determinazione dei pattern di occupazione in paesaggi frammentati (Haila 2002; Franklin & Lindenmayer 2009; Hanski & Gaggiotti 2004; Forman 2009). Infatti la grandezza del patch funge da surrogato per molte altre variabili che misurano gli effetti della frammentazione degli habitat. Il suo utilizzo nei modelli di distribuzione dunque garantisce da un lato un alto valore predittivo, ma dall'altro non necessariamente permette di comprendere, e quindi spiegare, i processi di estinzione locale che avvengono regolarmente in ambienti frammentati (Mortelliti & Boitani *submitted*). Se l'obiettivo della ricerca, come nel nostro caso, è quello di fornire modelli empirici da utilizzare per la gestione del territorio, la dimensione del patch è un indice molto efficiente per tale scopo;
- Mean Edge Distance. Misura della configurazione spaziale dell'habitat intorno ad un patch focale. Questo indice prende in considerazione le distanze medie che separano il patch focale dai frammenti, all'interno di un raggio predefinito. La variabile cresce quando il patch focale è circondato da altri frammenti sempre più vicini, distinguendo distribuzioni di patch sparse da distribuzioni aggregate (Gustafson & Parker 1994);
- Mean Proximity Index. Altra misura della configurazione spaziale dell'habitat intorno ad un patch focale. Matematicamente è espresso come la media dei rapporti tra le aree dei frammenti, all'interno di un raggio specificato, e le loro distanze dal patch focale. Cresce quando il patch focale è circondato da altri frammenti sempre più grandi e/o sempre più vicini distinguendo, in questo caso, distribuzioni sparse di piccoli frammenti da aggregate di frammenti ampi (Gustafson & Parker 1994).

Queste ultime due variabili sono state misurate entrambe entro un raggio di 1.000 m, scelto in funzione delle potenzialità di spostamento dei dispersal del moscardino, utilizzando l'estensione "Identify Features Within Distance" (Jenness 2003) di ArcView 3.3 (ESRI ©).

- **Siepi connesse.** Variabile che esprime il numero di siepi che partono dal patch focale e che lo connettono fisicamente con altri patch circostanti;
- **Patch connessi.** Variabile che esprime il numero di patch circostanti che sono connessi fisicamente al patch focale.

Queste altre due variabili valutano il grado di connettività strutturale all'interno del paesaggio. Per calcolarle è stato necessario digitalizzare e quindi georiferire tutti gli elementi di vegetazione arborea e/o arbustiva con un'estensione minima di 2 m che ricadevano all'interno dell'estensione dei tre paesaggi (vedi par. successivo). La digitalizzazione e la rasterizzazione è stata effettuata utilizzando il software ArcGis 9.3 (ESRI ©).

E' stato necessario, inoltre, considerare una covariata per differenziare i tre paesaggi da un punto di vista qualitativo, aspetto che non è stato preso in considerazione per limiti della ricerca. La covariata è stata imposta in tutti i modelli. Studi pregressi sul moscardino, nelle medesime aree di studio, hanno mostrato come la qualità dell'habitat giochi un ruolo importante nel determinare la presenza della specie in un patch (Mortelliti 2012 *submitted*) e che i tre paesaggi presentano delle differenze di qualità di habitat che quindi si ripercuotono nella probabilità di presenza del moscardino nei patch che compongono ogni paesaggio.

Prima delle analisi statistiche è stato condotto il test di Kolmogorov-Smirnov per testare la normalità delle variabili e, quelle che lo richiedevano, sono state trasformate tramite logaritmo in base 10 per soddisfare il requisito di normalità (Gotelli & Ellison 2004). Nell'appendice B1 sarà possibile avere un quadro generale di tutte le variabili utilizzate per predire la probabilità di presenza e nell'appendice B2 le relative statistiche di base.

E' stato sviluppato a priori un set di modelli di regressione logistica che mettesse in relazione i dati di presenza/assenza del moscardino (aggiornati al mese di Giugno 2011) con le singole variabili predittive, utilizzando il software statistico SPSS 17.0.

Sono stati testati 6 modelli (Tab. 3.2): un modello che prevedesse l'utilizzo individuale della variabile categorica e 5 che prevedessero la combinazione, in coppia, della variabile categorica con ciascuna delle altre variabili predittive. Non si è potuto testare modelli con più di due variabili contemporaneamente a causa del basso numero di campione (n=28).

Tab. 3.2. Set modelli testati per il calcolo della probabilità di presenza. Sono elencati il numero del modello testato, il numero di parametri all'interno del modello (K), tutte le variabili indipendenti utilizzate nel modello: Variabile categorica, dimensione dei patch, Mean Edge Distance, Mean Proximity Index, Siepi connesse e Patch connessi.

Numero modello	K	Variabile Categorica	Dimensioni dei patch	Mean Edge Distance	Mean Proximity Index	Siepi connesse	Patch connessi
1	3	Х					
2	4	Х	Х				
3	4	Х		Х			
4	4	Х			Х		
5	4	Х				Х	
6	4	X					X

L'autocorrelazione spaziale in questa ricerca non è stata considerata in quanto, nel modello di popolazione spazialmente esplicito che è stato elaborato, se fosse stata presa in esame ogni posizione (e patch) della mappa influenzerebbe troppo le posizioni (e i patch) vicini, così da non cogliere vere differenze puntuali di occupazione della specie. Il pericolo è che questo problema si diffondi a cascata per ogni punto della mappa, per cui nel modello la specie risulterebbe presente (o assente) in tutti i patch che compongono il paesaggio.

I modelli finali, che meglio prevedessero la distribuzione delle osservazioni rilevate, sono stati selezionati seguendo i principi dell'"Information Theoretic Approach" basato sul calcolo degli AIC (Akaike's Information Criterion; Akaike 1973). Questo approccio permette la selezione del modello più "parsimonioso" (composto cioè da un numero minimo di parametri) che meglio approssima i dati analizzati (Forster 2000).

Nella pratica è stata utilizzata la versione degli AIC adattata a campioni di piccole dimensioni, l'AIC_c:

 $AIC_{c} = -2 log(L(\theta)) + 2K (n / n - K - 1);$

dove: $L(\theta)$ è il valore massimo della funzione likelihood calcolata nei valori dei parametri stimati, K è il numero di parametri nel modello e n è la grandezza del campione (n = 28).

Dalla formula si intuisce come il modello che risulterà avere il valore di AIC_c più basso sarà quello che raggiungerà un miglior compromesso tra il valore della funzione di verosimiglianza ed il numero di parametri nel modello (K).

Si è quindi utilizzata la tecnica del model averaging per ridurre l'incertezza che segue la selezione di un singolo modello, considerato il migliore, all'interno di un insieme di modelli: gli AIC weights (AIC_w) consentono di valutare il peso relativo di ciascun modello rispetto agli altri nell'insieme (Burnham & Anderson 2002). Questa metodologia permette di condurre inferenze su un set di modelli, i quali abbiano ricevuto un buon supporto dai dati (ad esempio quelli che rientrano in un Δ AIC < 2). In questo modo si considerano tutti i modelli per farne una sintesi ponderata, ovvero una media ponderata dei parametri (β averaged). I fenomeni ecologici funzionano proprio così, dobbiamo tenere in considerazione tutte le sfaccettature, complessità e incertezza che caratterizzano questo tipo di fenomeni.

3.6.3 Fase 3: parametrizzazione del modello di popolazione spazialmente esplicito

Per modellizzare le popolazioni di moscardino è stato necessario dapprima:

- Definire l'estensione dei tre paesaggi per identificare tutti i patch su cui la modellizzazione della popolazione sarà effettuata. I paesaggi sono stati definiti avere un'estensione pari a 256 km² (quadrati di 16 km di lato) il cui baricentro coincide con quello dei patch campionati. L'estensione è stata scelta in funzione degli obiettivi della ricerca e dei limiti imposti dal software, utilizzato per la modellizzazione, sul numero massimo di righe e colonne dei file ASCII che si possono importare. Tale scelta è stata presa in combinazione con quella della risoluzione delle mappe (vedi sotto). Mappe troppo estese e con risoluzioni troppo alte, infatti, possono causare il fallimento delle varie operazioni svolte dal software dovute ad insufficienza di memoria.
- Selezionare e ritagliare tutti i patch che ricadevano all'interno delle categorie "Boschi di latifoglie" (categoria 3.1.1) e "Cespuglieti ed arbusteti" (categoria 3.2.2) della Carta di Uso del Suolo della Regione Lazio;
- Rasterizzare i file vettoriali. Ogni raster rappresenterà uno strato informativo (layer) in cui vengono espresse le singole variabili ambientali, su cui si baserà il calcolo dell'idoneità ambientale (attraverso l'HS function). Per ogni paesaggio tutti i layer (e quindi i raster) devono rappresentare la stessa estensione di territorio con la stessa precisione (risoluzione). E' stata scelta una risoluzione dei raster (grandezza celle) di 10 m. Selezionare una risoluzione di mappa coerente con la biologia della specie risulta essere estremamente importante per una corretta modellizzazione spazialmente esplicita delle popolazioni. Per la scelta della giusta risoluzione di mappa, in base alle caratteristiche biologiche di una specie, ci si può basare sul valore di Neighborhood distance impostato (vedi sotto);
- Convertire i file raster in file ASCII.

La modellizzazione spazialmente esplicita delle popolazione è stata effettuata utilizzando il software Ramas GIS 5.0. L'importazione e l'analisi dei dati relativi all'habitat, su cui la struttura spaziale del modello di metapopolazione può basarsi, è avvenuta mediante il modulo Spatial Data del software. Questo modulo consente di importare i dati territoriali di uno o più layer, combinare le informazioni degli stessi per fare una mappa di idoneità ambientale (Habitat Suitability, HS), trovare i patch occupati dalla specie nella mappa HS ed esportare la struttura spaziale dell'habitat per il suo utilizzo nel Metapopulation Model. Il modulo Spatial Data agisce come un ponte tra i dati del paesaggio e il modello di metapopolazione, identificando e determinando come la specie modellizzata percepisce la patchiness del paesaggio (Akçakaya 2002).

Dopo l'importazione dei file ASCII, che rappresentano gli strati geografici informativi su cui si baserà il calcolo dell'idoneità ambientale, è necessario definire l'Habitat Suitability (HS) function, la funzione che relaziona le caratteristiche dell'habitat ad una qualche misura di idoneità ambientale. La funzione HS viene definita come: ogni relazione quantitativa tra fattori fisici e 49

biologici nell'ambiente e l'idoneità ambientale per una data specie. Tecnicamente la funzione determina l'idoneità ambientale di ciascuna posizione (ciascuna cella) a partire dagli attributi, dei file ASCII importati, che descrivono le variabili ambientali (le variabili predittive usate nei modelli di presenza). I valori di HS calcolati dalla formula possono variare da 0 (non idoneo) a 1 (il più idoneo), proprio come la probabilità di presenza di una specie.

La modellizzazione ha comportato la scelta di altri due parametri fondamentali:

- Scelta dell'*Habitat Suitability threshold*. Parametro che identifica un valore soglia di Habitat Suitability (HS) al di sotto del quale si assume che la specie non può riprodursi. Tecnicamente il software utilizza questo parametro per definire "celle idonee" includendo qualsiasi cella con un valore di HS uguale o maggiore del parametro.
- Scelta del Neighborhood distance. Parametro utilizzato dal software per identificare i patch nella mappa. Si può considerare il parametro come una sorta di guscio che connette le celle idonee tra di loro. Tecnicamente, queste ultime, quando sono separate da una distanza minore o uguale al valore del parametro, sono considerate all'interno dello stesso patch. In termini biologici questo vuol dire che, secondo la scala di percezione dell'habitat della specie, questa percepisce di fatto in modo "continuo" una discontinuità uguale o minore alla distanza di Neighborhood.

Per questa ricerca si è deciso di utilizzare un valore di Neighborhood distance pari a 1. L'unità di distanza del parametro è una cella. Questo vuol dire che il moscardino percepisce come continuità una discontinuità di massimo 10 m del suo habitat.

Una guida da seguire nella scelta di una risoluzione di mappa, coerente con la biologia della specie che si vuole modellizzare, è basata sul valore del parametro di Neighborhood distance impostato. Se il valore di Neighborhood distance corrisponde a meno di una cella allora la risoluzione di mappa è troppo bassa per le caratteristiche biologiche della specie. Se al contrario il valore di Neighborhood distance corrisponde a più di 4 celle allora la risoluzione di mappa è troppo alta, il che potrebbe tradursi nel fallimento delle varie operazioni, svolte dal software, dovute ad insufficienza di memoria.

Dopo aver valutato la funzione di HS è necessario specificare, e/o mettere in relazione con l'idoneità ambientale, i parametri della popolazione. I parametri di popolazione utilizzati per modellizzare le popolazioni in Ramas GIS sono:

• **Carrying Capacity (K).** La capacità portante dell'habitat è la capacità di un ambiente e delle sue risorse di sostenere un certo numero di individui (Bailey *et al.* 1984). La carrying capacity può dipendere dalla disponibilità di risorse trofiche nell'ambiente, dalla disponibilità di strutture fisiche dell'habitat necessarie per la sopravvivenza della specie o da particolari strutture sociali della popolazione (per es. la territorialità).

K è uno dei parametri fondamentali per contemplare la densità-dipendenza in un modello logistico di accrescimento delle popolazioni, la cui formula è: dN / dt = rN (K - N) / K; dove: r è il tasso di accrescimento istantaneo (vedi dopo). Nella curva di accrescimento logistico, K rappresenta il momento in cui la popolazione rimpiazza se stessa (Mills 2006).

In questa ricerca la carrying capacity è stata stimata attraverso un modello di regressione lineare multipla. La variabile dipendente presa in considerazione è la densità stagionale massima osservata in tutti i patch campionati durante la stagione di campionamento, moltiplicata per gli ettari di bosco (o della griglia), e come variabile indipendente i valori di probabilità di presenza calcolati dal modello di presenza (vedi par. 3.6.2), che

corrispondono ai valori di HS calcolati da Ramas GIS. Considerato che si è scelto di costruire un modello che consideri le sole femmine della popolazione il risultato è stato moltiplicato per la proporzione di femmine nella popolazione. La carrying capacity in Ramas GIS viene espressa, quindi, come totale numero di individui, nel nostro caso di femmine, appartenente ad ogni (sub)popolazione.

- Initial Abundance. Si tratta delle abbondanze iniziali (al tempo t₀) a cui le popolazioni si trovano, corrispondente al momento di inizio delle simulazioni.
 In questa ricerca le abbondanze iniziali sono state calcolate in maniera del tutto analoga alla carrying capacity con l'unica differenza che si è utilizzata, come variabile dipendente del modello di regressione multipla, la densità mensile del mese di maggio 2010 osservata e non quella massima stagionale. Nell'appendice B3 sono riportate le variabili utilizzate nei modelli di regressione lineare multipla, sia per il calcolo dell'initial abundance che della carrying capacity.
- Tasso di fertilità. Il tasso di fertilità viene definito come il numero di uova prodotte per femmina nell'unità di tempo (Bailey *et al.* 1984). Per limiti della ricerca non è stato possibile contare il numero di uova prodotte e quindi il tasso di fertilità è stato approssimato utilizzando il tasso di natalità (numero di piccoli nati per femmina nell'unità di tempo). Sempre per limiti della ricerca in realtà sono stati contati solo i piccoli sopravvissuti dopo il parto, non considerando la mortalità neonatale. In particolare per la modellizzazione delle popolazioni, in questa ricerca, si è calcolata la media dei tassi di natalità di tutti i patch campionati nell'intervallo di tempo Maggio 2010 – Dicembre 2011.
- Tasso di accrescimento massimo della popolazione (R_{max}). Il parametro è definito come il rapporto tra la dimensione della popolazione al tempo t+1 e la dimensione della popolazione al tempo t (Mills 2006). In formula: $\lambda = N_{t+1} / N_t$. Dal tasso finito di accrescimento si può risalire facilmente al tasso istantaneo di accrescimento istantaneo della popolazione tramite la formula: $r = \log_e(\lambda)$.

Il tasso di accrescimento massimo è un altro parametro fondamentale per modellizzare la densità-dipendenza e, nella curva di accrescimento logistico, rappresenta la pendenza della curva per piccole dimensioni della popolazione (in assenza di effetto Allee).

In questa ricerca il tasso di accrescimento massimo della popolazione è stato impostato in base al valore minimo possibile che si può impostare sul software utilizzato per la modellizzazione spazialmente esplicita ($R_{max} = 1,1$). Questa scelta deriva dal fatto che il tasso di accrescimento medio della popolazione (R = 0,83) è risultato essere inferiore a quello possibile dal software. Questa scelta è purtuttavia giustificata dal fatto che il tasso di accrescimento a nostra disposizione è un tasso medio, quindi logicamente inferiore al tasso massimo di accrescimento. Per il calcolo del tasso di accrescimento medio si sono considerati i dati relativi solo agli individui sessualmente attivi.

• Tasso di sopravvivenza. Definito come il rapporto tra le dimensioni della popolazione al tempo t e le dimensioni della popolazione al tempo t₀: $S_0 = N_t / N_0$. In questa ricerca è stato calcolato il tasso di sopravvivenza annuale con il software MARK, attraverso il protocollo *Cormack-Jolly-Seber* (Pollock *et al.* 1990), utilizzando i dati disponibili di cattura-marcatura-ricattura dell'anno di campionamento 2011. Il modello finale è stato scelto seguendo lo stesso approccio seguito per la selezione del modello di presenza (Information Theoretic Approach, AIC; vedi par. 3.6.2).

La stocasticità ambientale, ovvero i cambiamenti imprevedibili che caratterizzano gli ambienti naturali, causano cambiamenti nei parametri demografici delle popolazioni e le fluttuazioni demografiche stocastiche rappresentano una caratteristica importante nelle dinamiche di popolazione. Ramas GIS permette di modellizzare la stocasticità ambientale attraverso fluttuazioni random dei tassi di fecondità, sopravvivenza e della carrying capacity ad ogni intervallo temporale, in accordo con i coefficienti di variazione e la deviazione standard impostati per questi parametri. Per questo motivo è importante utilizzare un grande numero di repliche quando si fanno correre questi modelli. Ramas GIS traccia tutte le curve di rischio con un intervallo di confidenza del 95% basato sul test statistico di Kolmogorov-Smirnov (Sokal & Rohlf 1981). L'ampiezza dell'intervallo di confidenza è una funzione del numero di repliche. Con 100 repliche, l'intervallo di confidenza è circa ± 0,10; quindi, se un modello prevede ad esempio il 10% di rischio di estinzione, il rischio effettivo può essere da 0 al 20%.

Inoltre, in Ramas GIS, per considerare un tipo di density-dependence nel modello logistico di accrescimento delle popolazioni, si è scelto il tipo di competizione *scramble*. Al crescere della dimensione della popolazione, la quantità di risorse per individuo diminuisce. Se le risorse disponibili sono ripartite più o meno in parti uguali tra gli individui, non ci saranno risorse sufficienti per chiunque a densità molto elevate. Questo processo può essere modellizzato da equazioni logistiche o di Ricker. In entrambe le equazioni, la dimensione della popolazione al tempo N_{t +1} è una funzione decrescente della dimensione della popolazione al tempo N_{t +1} è una funzione di Ricker.

La densità-dipendenza ad alte dimensioni di popolazione è modellizzata in Ramas Metapopulation come una diminuzione dei tassi vitali al crescere della densità, fino a quando la crescita non raggiunge la carrying capacity (o densità di equilibrio). Un ulteriore aumento della densità al di sopra di questo punto in genere si traduce in una diminuzione della crescita della popolazione, in modo che la popolazione declina verso la densità di equilibrio. Un risultato di questo meccanismo è che la densità-dipendenza è spesso una forza stabilizzatrice in quanto la popolazione cresce a densità inferiori l'equilibrio, per poi ridiscendere a densità sopra l'equilibrio, costringendo l'abbondanza della popolazione a rimanere intorno a questa densità di equilibrio. Tuttavia, se è molto forte, la densità-dipendenza nei SEPM può portare anche a fluttuazioni cicliche o caotiche, che destabilizzano la popolazione, anche in modelli senza alcuna variazione ambientale. Come risultato di queste proprietà, la densità-dipendenza può avere importanti effetti sul rischio di estinzione della popolazione (Ginzburg *et al.* 1990).

La dispersione in Ramas GIS viene definita come il movimento di organismi da una popolazione ad un'altra. Il tasso di dispersione viene specificato come la percentuale di individui che si disperdono in un intervallo temporale. Si considerano solo la percentuale di individui che in una popolazione arriva effettivamente ad un'altra popolazione target, non considerando di fatto la mortalità durante la dispersione. Questa deve essere incorporata nel modello di dispersione stesso. La dispersione è stata quindi parametrizzata attraverso la funzione dispersal-distance:

 $m_{ij} = a \cdot exp (-D_{ij}^{c} / b); dove:$

m_{ij} è il tasso di dispersione tra la popolazione *i* e la popolazione *j*;

a è la proporzione di individui che da una popolazione source arriva ad una popolazione target; b esprime il decremento del tasso di dispersione in funzione della distanza tra due patch; c determina la forma della funzione, se c=1 si ha una funzione esponenziale negativa di primo grado;

Dij è la distanza tra due patch.

Inoltre bisogna specificare una distanza massima di dispersione (D_{max}).

Per limiti della ricerca la parametrizzazione della dispersione del moscardino è stata approssimata in questo modo: per il parametro a si è utilizzato un valore arbitrario, che si pensa rispecchi le vere dinamiche di popolazione della specie; per il parametro b si è utilizzata la distanza media (in km) tra i patch in cui è stata osservata la presenza del moscardino durante il periodo di campionamento e i patch probabilmente occupati da modello di presenza (quelli con una probabilità di presenza maggiore di 0,5); il parametro c è stato impostato arbitrariamente seguendo la classica distribuzione esponenziale negativa di primo grado che assume la funzione dispersal-distance; la distanza massima di dispersione si è scelta in base ai dati presenti in bibliografia per la specie.

In Ramas GIS è possibile tener conto anche dei fattori densità dipendenti che influenzano la dispersione. Infatti molte specie in natura mostrano un'elevata tendenza ad emigrare dalle loro popolazioni di origine sotto condizioni di sovraffollamento. Si è quindi impostato un ulteriore parametro che descrive le capacità dispersive della specie, chiamato source population size (slope). Questo parametro rappresenta il coefficiente angolare della retta che relaziona la proporzione di individui che va in dispersione dalla popolazione source con la densità della popolazione source.

Infine si è potuto procedere con l'operazione di Find Patch, una funzione di Ramas GIS che:

- 1) carica tutte le mappe indicate in Input maps;
- 2) calcola il valore HS per ogni cella, basato sulla HS function;
- 3) disegna i patch di habitat raggruppando celle vicine che presentano valori di HS superiori o uguali alla soglia indicata (HS threshold);
- 4) per ogni patch, calcola l'HS totale, l'HS medio e il numero di celle; sulla base di questi, calcola la capacità portante (k) per ogni patch;
- per ogni patch con capacità portante (k) > 0 calcola il perimetro dei patch e i valori medi di ogni layer importato; sulla base di questi calcola tutti gli altri parametri di popolazione specificati sopra;
- 6) calcola le distanze tra i patch e quindi tra le popolazioni;
- 7) salva le coordinate dei patch, le distanze tra di loro e tutti i parametri di popolazione in un file che serve per le analisi che verranno effettuate in Metapopulation Model.

3.6.4 Fase 4: analisi di vitalità delle popolazioni con scenari di non cambiamento e scenari di cambiamento dell'habitat

Le analisi di vitalità delle popolazioni, con la struttura spaziale incorporata, sono state eseguite con il modulo Metapopulation Model. Questo modulo combina le informazioni spaziali sulle popolazioni, esportate dal modulo Spatial Data, con i parametri ecologici impostati per simulare l'andamento futuro delle popolazioni spazialmente strutturate. Metapopulation Model utilizza diversi metodi per riassumere i risultati di un'analisi di vitalità di popolazione. Alcuni di questi riguardano misure tradizionali come l'abbondanza delle popolazioni spazialmente strutturate (e di ogni singola popolazione) nel tempo e l'occupancy delle popolazioni spazialmente strutturate nel tempo e sue variazioni. Altri comprendono i tempi e rischi di estinzione o declino delle popolazioni. Attraverso l'analisi di tutti questi risultati si possono fornire indicazione sulla persistenza o vitalità delle diverse popolazioni modellizzate.

Nella presente ricerca, per valutare l'impatto dei diversi processi di perdita e frammentazione, sono stati fatti correre i modelli prima con uno scenario di non cambiamento dell'habitat, per ognuno dei tre paesaggi che compongono l'area di studio, utilizzando 100 repliche con una durata di 50 anni e intervalli di tempo annuali.

In seguito sono stati ipotizzati degli scenari di cambiamento con riduzioni di habitat, prima del 25% e poi del 50% della quantità di habitat media nei tre paesaggi. Si sono quindi tolti prima 1.511 ha e poi 3.022 ha di habitat dai paesaggi in due modalità differenti: una rimuovendo l'habitat in modo "diffuso" e una in modo "concentrato". Per fare questo si sono modificate le carte con il software ArcGIS 9.3 e, attraverso l'estensione Create random points, si sono distribuiti dei punti random sopra i patch che compongono ogni paesaggio per usarli come maschera di taglio dei patch sottostanti. Per le modalità "diffuse" si sono creati 128 punti (con una distanza minima di 500 m) per ogni paesaggio, per le modalità "concentrate" si sono, invece, creati 4 punti (con una distanza minima di 4.000 m). La grandezza dei cerchi è stata stabilita in modo da togliere esattamente, per ogni paesaggio, prima 1.511 ha e poi 3.022 ha. Nella figura 3.2 si mostrano gli scenari su cui sono fatte correre le simulazioni per il solo paesaggio della Sabina, a titolo esemplificativo.

Si è proceduto quindi all'analisi di vitalità delle popolazioni con questi scenari di cambiamento dell'habitat, per ognuno dei tre paesaggi, sempre utilizzando 100 repliche con una durata di 50 anni e intervalli di tempo annuali.

(segue a pagina successiva)

Fig. 3.2 Scenari di non cambiamento e di cambiamento dell'habitat per il paesaggio della Sabina. Negli scenari di cambiamento le figure a destra mostrano la rimozione del 25% della quantità di habitat media dei tre paesaggi, nelle figure a sinistra il 50%.

4 RISULTATI

Nel corso della stagione di campionamento 2010 sono stati marcati 216 individui di moscardino, di cui 182 nel paesaggio del Lamone (LM), 31 nel paesaggio di Viterbo (VT) e 3 nel paesaggio della Sabina (FS). Il moscardino è stato ritrovato in totale in 15 patch dei 28 campionati (per il Lamone trattasi di griglie), di cui 3 nel paesaggio della Sabina (FS1, FS2, FS9), 5 nel paesaggio di Viterbo (VT2, VT5, VT7, VT8, VT9) e in 7 griglie della Riserva Naturale Selva del Lamone (LM1, LM2, LM4, LM5, LM6, LM7, LM8). Sul totale di individui marcati, 85 sono stati riconosciuti come adulti, 44 come sub-adulti e 87 come juvenile (Fig. 4.1). Per quanto riguarda il sesso, invece, sono stati identificati 36 maschi e 77 femmine. Il numero degli individui di sesso incerto risulta essere così alto (103) in quanto nella gran parte degli juvenile marcati non è stato possibile riconoscere il sesso in base alla distanza dei fori ano-genitali.

Fig. 4.1 Numero di individui campionati nell'anno 2010 divisi per classe d'età.

Durante il campionamento sono stati registrati inoltre 21 eventi riproduttivi (ovvero madre con piccoli) di cui 19 nel paesaggio del Lamone e 2 in quello di Viterbo. La dimensione media della cucciolata è risultata pari a 4,50 piccoli per evento riproduttivo nel paesaggio di Viterbo e 5,42 piccoli per evento riproduttivo nel paesaggio del Lamone.

L'indice di abbondanza annuale delle popolazioni, calcolato attraverso il rapporto del numero totale di individui e l'area della griglia comprensiva di boundary strip, varia tra i 0,09 individui/ha del patch FS1 e gli 8,13 individui/ha dei patch LM4 e LM8 (Fig. 4.2 e appendice C). Per una dettagliata descrizione di tutti i dati ecologici sul moscardino raccolti nella stagione di campionamento 2010 si rimanda alla tesi di laurea di Santarelli (2011).

Fig. 4.2 Istogramma che mostra l'indice di abbondanza annuale 2010 per ciascun patch, con le relative deviazioni standard. L'indice di abbondanza è stato calcolato attraverso il numero totale di individui e l'area della griglia comprensiva di boundary strip. I valori dell'indice sono riportati in appendice C.

Le variazioni stagionali di abbondanza delle popolazioni, relative all'anno 2010, sono state messe a confronto con quelle della stagione di campionamento 2011 (Fig. 4.3). Nella figura è possibile vedere che la dinamica delle popolazioni di moscardino è caratterizzata da due picchi in corrispondenza dei mesi di maggio e novembre ed un minimo in corrispondenza dei mesti estivi luglio-settembre.

Fig. 4.3 Variazioni stagionali di abbondanza (numero di individui) nel corso degli anni 2010 e 2011 a confronto. 57

Il rapporto sessi della popolazione (maschi/femmine) è variato considerevolmente tra gli anni 2010-2011 (Fig. 4.4), passando da un sostanziale sbilanciamento a favore delle femmine, come visto per il 2010 (0,46), ad una situazione più equilibrata nel corso del 2011 (0,96).

Fig. 4.4 Rapporto sessi (maschi / femmine) per le stagioni di campionamento 2010 e 2011.

Le variazioni della struttura della popolazione nel corso dei due anni (2010-2011) è sintetizzata nella Fig. 4.5. Come si può vedere i mesi estivi risultano i periodi con la maggior incidenza di juvenile, cui segue la massima incidenza di sub-adulti nei periodi antecedenti l'inverno.

Fig. 4.5 Struttura della popolazione negli anni 2010-2011. Viene mostrata la percentuale di individui appartenenti ad ogni classe d'età (juvenile, subadulti, adulti) nel corso dei due anni.

4.1 Modelli di regressione

Il modello di regressione logistica per il calcolo della probabilità di presenza del moscardino con il valore di AICc minore è risultato essere quello che include la variabile dimensioni dei patch (beta=2,559; E.S.=1,546), oltre la variabile categorica relativa al paesaggio (beta₁=-12,472 e beta₂=-13,637; E.S.=14.210,364; Tab. 4.2). Nel modello la costante presenta un beta pari a 12,202 e un errore standard pari a 14.210,364. Nessuno tra gli altri modelli classificati sono rientrati in un Δ AICc < 2 e quindi si è scelto di prendere questo solo modello come riferimento per il calcolo della probabilità di presenza nelle simulazioni fatte con Ramas GIS.

Tab. 4.2 Sintesi dei modelli di regressione logistica. I modelli sono ordinati secondo il valore di AICc. Viene elencato il nome del modello con le variabili indipendenti testate (cat. sta ad indicare la variabile categorica, inclusa in tutti i modelli). A seguire vengono riportati: il numero dei parametri per ogni modello (K), il valore di LogLikelihood, l'AIC_o il ΔAIC_o l'AIC_o w e l'R² di ogni modello testato.

Nome modello	К	LogLikelihood	AICc	ΔAIC_{c}	AIC _c w	R ²
Dimensioni dei patch + cat.	4	19,100	47,94	0,00	0,9692	0,387
Variabile categorica	3	24,693	56,39	8,45	0,0142	0,576
Mean Proximity Index + cat.	4	24,426	58,59	10,65	0,0047	0,392
Mean Edge Distance + cat.	4	24,566	58,87	10,93	0,0041	0,397
Siepi connesse + cat.	4	24,595	58,93	10,99	0,0040	0,391
Patch connessi + cat.	4	24,631	59,00	11,06	0,0038	0,389

Nella tabella 4.3 si riporta una sintesi dei modelli di regressione lineare multipla utilizzati per il calcolo della carrying capacity e dell'initial abundance. Si ricorda che nei modelli di regressione si è utilizzata come variabile indipendente la probabilità di presenza del moscardino e come variabile dipendente la densità stagionale massima 2010 nel modello per il calcolo della carrying capacity e la densità mensile maggio 2010 nel modello per il calcolo dell'initial abundance.

Tab. 4.3 Sintesi dei modelli di regressione lineare multipla per il calcolo della carrying capacity e dell'initial abundance. Vengono elencati: il nome del modello, il valore di R², significatività statistica e i valori di beta relativi alla costante e al parametro (probabilità di presenza).

Modello	R ²	Sig.	Beta costante	Beta parametro (probabilità di presenza)
Carrying capacity	0,191	0,020	-0,863	2,396
Initial abundance	0,039	0,315	-0,033	0,245

Nella figura 4.6 si mostra il grafico delle due variabili, carrying capacity e initial abundance, in funzione della probabilità di presenza, come risultato dai modelli di regressione e quindi come parametrizzato nel modello di popolazione (vedi par. 4.2).

Fig. 4.6 Variazione della carrying capacity (a) e dell'initial abundance (b) in funzione della probabilità di presenza, come risultato dai modelli di regressione. I valori di carrying capacity e initial abundance sono espressi come numero di individui per ettaro. I pallini indicano i valori osservati delle variabili durante il campionamento.

4.2 Parametrizzazione del modello di popolazione spazialmente esplicito

La parametrizzazione del modello spazialmente esplicito di dinamica di popolazione del moscardino è avvenuta dapprima implementando il modello di probabilità di presenza nella funzione di habitat suitability (Tab. 4.4). Nella funzione compaiono i beta del modello scelto: prima quello della costante, poi i due relativi alla variabile categorica e quindi quello per la variabile indipendente (dimensioni dei patch).

Il valore minimo di probabilità di presenza nei frammenti boschivi in cui è stata osservata la riproduzione è risultato essere pari a 0,67. Conseguentemente è stato utilizzato questo valore come soglia minima delle dimensioni di un patch per la riproduzione della specie (parametro HS threshold). Si è poi deciso di utilizzare un valore di Neighborhood distance uguale a 1, come già discusso nel capitolo 3 (Tab. 4.4).

La parametrizzazione della carrying capacity e dell'initial abundance è avvenuta grazie all'implementazione dei modelli di regressione lineare multipla, presentati prima, nelle rispettive formule (Tab. 4.4). Nelle formule compaiono i beta (prima quello relativo al parametro probabilità di presenza, poi quello delle costanti) dei modelli. Le funzioni così implementate si sono moltiplicate per gli ettari di bosco e per la proporzione delle femmine nella popolazione che, con i dati aggiornati alla stagione 2011, è risultata essere pari a 0,5. Questo perché si è scelto di costruire un modello che consideri le sole femmine della popolazione. Il coefficiente di variazione del modello per il calcolo della carrying capacity è di 0,3.

Il tasso di fecondità medio 2010-2011 è risultato essere pari a 4,6 con un coefficiente di variazione di 0,4. Il tasso di accrescimento medio 2011 della popolazione è invece risultato essere di 0,87 e quindi come tasso di accrescimento massimo della popolazione, in base al valore minimo possibile da Ramas GIS, si è deciso di impostare un valore pari a 1,1 (Tab. 4.4). Infine il tasso di sopravvivenza, calcolato attraverso il protocollo *Cormack-Jolly-Seber*, è risultato essere di 0,001, con un coefficiente di variazione di 0,2.

Per la funzione dispersal-distance si è considerata una proporzione di individui che va in dispersione pari a 0,01, una distanza media (tra i patch in cui è stata osservata la presenza del moscardino durante il periodo di campionamento e i patch probabilmente occupati da modello di presenza) pari a 0,50 km e una distanza massima pari a 1,20 km (Tab. 4.4 e Fig. 4.7). La distanza massima è stata scelta in base ai dati presenti in bibliografia per la specie (Bright & Morris 1992; Juskaitis 1997, 2008). La modellizzazione della densità dipendenza della dispersione è avvenuta considerando un valore del parametro source population size (slope) pari a 0,01.

Tab. 4.4 Parametri utilizzati per la modellizzazione spazialmente esplicita delle popolazioni di moscardino. Nella prima colonna viene elencato il nome del parametro, mentre nella seconda il valore o le funzioni implementate nella modellizzazione.

HS function	EXP(12,202+(-12,472*Dummy1)+(-13,637*Dummy2)+(2,559*[Map]))			
	(EXP(12,202+(-12,472*Dummy1)+(-13,637*Dummy2)+(2,559*[Map]))+1			
HS threshold	0,67			
Neighborhood distance	1,00			
Carrying capacity	EXP(((2,396*(ahs)) - 0,863) EXP((((2,396*(ahs)) - 0,863) + 1) * ((noc)/100)) * 0,5			
Initial abundance	$\frac{\text{EXP}((0,245*(ahs)) - 0,33)}{\text{EXP}(((0,245*(ahs)) - 0,33) + 1)}*((noc)/100))*0,5$			
Tasso di fecondità	4,6 (coefficiente di variazione = 0,4)			
Tasso di accrescimento massimo della popolazione	1,1			
Tasso di sopravvivenza	0,001 (coefficiente di variazione = 0,2)			
Funzione dispersal-distance	$m_{ij} = 0.01 \cdot exp (-D_{ij}^{1} / 0.50)$			
Distanza massima di dispersione	1,20			
Source population size (slope)	0,01			

Nella figura 4.7 è mostrato il grafico che relaziona la proporzione di individui che va in dispersione con la distanza che separa due popolazioni, così come parametrizzata nel modello di popolazione spazialmente esplicito attraverso la funzione dispersal-distance.

Fig. 4.7 Tasso di dispersione (proporzione di individui che da una popolazione source arriva ad una popolazione target) in funzione della distanza secondo la funzione dispersal-distance $m_{ij} = 0,01 \cdot \exp(-D_{ij}^{1} / 0,50)$.

4.3 Simulazioni con scenari di non cambiamento dell'habitat

Una volta parametrizzato il modello di popolazione spazialmente esplicito, la prima operazione che Ramas GIS esegue è il calcolo dei valori di habitat suitability attraverso la funzione HS, per la costruzione della mappa di idoneità ambientale (HS). In base a questi valori, e ai parametri HS threshold e Neighborhood distance, il modello identifica e disegna i patch di habitat occupati dalle popolazioni all'inizio della simulazione nella mappa HS.

Le mappe di idoneità ambientale, con disegnati i patch occupati, dei tre paesaggi per gli scenari di non cambiamento sono riportate nell'appendice D. Nella figura 4.8 si presentano le mappe delle metapopolazioni di inizio simulazione per i tre paesaggi. Il numero delle popolazioni è uguale al numero di patch identificati nella mappa HS. I cerchi rappresentano le popolazioni presenti all'inizio della simulazione, il cui diametro è proporzionale alla carrying capacity della popolazione stessa. Le linee che uniscono le popolazioni stanno ad indicare che tra le due popolazioni avviene dispersione.

E' importante sottolineare che il termine metapopolazione in Ramas GIS si riferisce a qualsiasi tipo di popolazione spazialmente strutturata, non solo alla metapopolazione classica come definita precedentemente (vedi par. 1.6). Per facilità nel testo verrà adottata la stessa terminologia. Inoltre, non conoscendo le reali dinamiche delle metapopolazioni presenti nei paesaggi studiati, per "metapopolazione" si intende l'insieme delle popolazioni presenti in un paesaggio.

(segue a pagina successiva)

(segue a pagina successiva)

Fig. 4.8 Mappa delle metapopolazioni di inizio simulazione: (a) nel paesaggio del Lamone, (b) nel paesaggio di Viterbo e (c) nel paesaggio della Sabina. I cerchi rappresentano le popolazioni con un diametro proporzionale alla carrying capacity. Le linee che uniscono le popolazioni indicano dispersione tra le due popolazioni.

Il Lamone è il paesaggio con il maggior numero di popolazioni ad inizio simulazione (189 patch occupati). Le dimensioni delle popolazioni sono maggiori rispetto gli altri paesaggi, mentre le distanze medie che separano i frammenti sono minori; pertanto nel modello risulta essere il paesaggio con il più alto numero di possibili eventi di dispersione tra le popolazioni. A seguire il paesaggio di Viterbo con 149 patch occupati ad inizio simulazione ed infine quello della Sabina con 63 patch.

Nell'appendice E sono elencati i valori HS totali per ogni patch e i valori di carrying capacity e initial abundance patch-specifici delle popolazioni corrispondenti. Alla fine delle tabelle sono riportati i valori totali di questi parametri, relativi a tutto il paesaggio. Si ricorda che si è scelto di costruire un modello che consideri solo le femmine della popolazione pertanto nel testo per "numero di individui" si fa riferimento al numero di individui femmina delle popolazioni di moscardino.

Le popolazioni più numerose sono presenti nel paesaggio del Lamone. Il patch numero 115 è quello occupato dalla popolazione più grande con 1.525 individui di initial abundance e 2.620

individui alla carrying capacity. A seguire il patch numero 181 con 675 individui all'inizio della simulazione e 1.160 individui di carrying capacity. La terza popolazione del paesaggio, che supera i 200 individui all'inizio della simulazione, è quella che occupa il patch numero 168 (320 individui di initial abundance e 549 di carrying capacity; appendice E e Fig. 4.9a). Il patch numero 115 identifica la Riserva Naturale Selva del Lamone in cui si è svolta l'attività di campionamento delle popolazioni di moscardino. I valori di abbondanza e carrying capacity associati al patch risultano particolarmente elevati in quanto l'habitat idoneo si estende per ben 12,54% della superficie totale del paesaggio (appendice E).

Nel paesaggio di Viterbo è il patch numero 27 quello che presenta la popolazione più numerosa ad inizio simulazione con 232 individui di initial abundance e una carrying capacity di 398 individui. Il secondo è il numero 82 con un'initial abundance di 225 individui e 387 individui alla carrying capacity (appendice E e Fig. 4.9b). In quest'ultimo patch era posizionata una delle griglie di campionamento.

Nel paesaggio della Sabina il patch con la popolazione più grande all'inizio della simulazione è il numero 21 con 743 individui e una carrying capacity di 1.276 individui. A seguire il patch numero 60 con un'initial abundance di 386 individui e 663 individui alla carrying capacity (appendice E e Fig. 4.9c). Una terza popolazione supera i 200 individui nel paesaggio, quella che occupa il patch numero 34 (356 individui di initial abundance e 611 di carrying capacity). Nessuno di questi tre patch è stato campionato durante l'attività di campo.

Il grafico della struttura della popolazione mostra un istogramma della distribuzione degli individui tra le popolazioni all'inizio della simulazione (Fig. 4.9a per il Lamone, Fig. 4.9b per Viterbo e Fig. 4.9c per la Sabina).

Fig. 4.9 Distribuzione degli individui tra le popolazioni all'inizio della simulazione: (a) nel paesaggio del Lamone, (b) nel paesaggio di Viterbo, (c) nel paesaggio della Sabina. I valori di abbondanza di ogni popolazione sono riportati in appendice E.

I valori di habitat suitability medi e totali del paesaggio, considerando tutte le celle della mappa, e la carrying capacity e l'initial abundance dei paesaggi sono elencati nella Tab. 4.5. Il paesaggio con la metapopolazione (insieme delle popolazioni del paesaggio) più numerosa è risultato essere quello del Lamone con 4.075 individui all'inizio della simulazione, una carrying capacity di 6.974 individui e un valore di habitat suitability medio pari a 0,34. Molto meno numerosa rispetto la prima è la metapopolazione del paesaggio della Sabina con 2.337 individui di initial abundance, 3.977 individui di carrying capacity e un HS medio di 0,19. Infine la metapopolazione meno numerosa, non di molto inferiore rispetto alla precedente, è risultata essere quella di Viterbo con 1.987 individui di initial abundance, 3.392 individui alla carrying capacity e un HS medio di 0,16.

Tab. 4.5 Idoneità ambientale media (Media HS) e total (Tot. HS) e, carrying capacity (Tot. K) e initial abundance (Tot. Init. Abund.) dei paesaggi. I dati sono estratti dalle tabelle presenti nell'appendice E.

Paesaggio	Media HS	Tot. HS	Tot. K	Tot. Init. Abund.
Lamone	0,34	853.190,49	6.974	4.075
Viterbo	0,16	413.641,91	3.392	1.987
Sabina	0,19	496.183,11	3.977	2.337

Nell'appendice F sono riportate le tabelle relative agli indici geometrici dei patch con: l'area dei patch (in km²), l'area dei patch espressa come percentuale rispetto l'estensione di tutti gli altri patch presenti nel paesaggio e rispetto l'estensione totale del paesaggio, il perimetro dei patch (in km) e il rapporto tra il perimetro e l'area di ciascun patch (un indice di forma dei patch). Alla fine delle tabelle sono mostrati i valori medi delle aree, dei perimetri e dei rapporti tra i perimetri e le aree dei patch che compongono i paesaggi, di cui si mostra una sintesi nella tabella 4.6.

Il paesaggio con la metapopolazione più numerosa, il Lamone, è quello con la più alta estensione di habitat idoneo (33,57% del paesaggio). Le dimensioni medie dei patch del paesaggio (0,40 km²) non sono le più alte tra tutti i paesaggi, sebbene presenti il più basso indice di forma (perimetro/area) medio dei patch. Il paesaggio con le dimensioni medie dei patch maggiori, invece, è risultata la Sabina (0,78 km²) il cui habitat idoneo si estende per 19,23% del paesaggio. Il paesaggio di Viterbo, quello con la metapopolazione meno numerosa, presenta la più bassa estensione di habitat idoneo (16,43% del paesaggio), la più bassa grandezza media e il più alto indice di forma medio dei patch.

Tab. 4.6 Indici geometrici di paesaggio: percentuale di estensione di habitat idoneo nel paesaggio, dimensioni medie (km^2) e rapporto medio tra i perimetri e le aree (1/km) dei patch nei tre paesaggi. I dati sono estratti dalle tabelle presenti nell'appendice F.

Paesaggio	Estensione habitat idoneo nel paesaggio (%)	Dimensione media dei patch (km²)	Perimetro / Area medio (1/km)
Lamone	33,57%	0,40	16,63
Viterbo	16,43%	0,28	23,72
Sabina	19,23%	0,78	18,14

Le traiettorie della popolazione proiettano le abbondanze della popolazione (N) attraverso il tempo. La traiettoria media di tutte le repliche della metapopolazione per il paesaggio del Lamone è mostrata nella figura 4.10a, per il paesaggio di Viterbo nella figura 4.10b e per il paesaggio della

Sabina nella figura 4.10c. Oltre alle abbondanze medie, le figure mostrano le abbondanze corrispondenti a \pm 1 di deviazione standard e le abbondanze minime e massime di tutte le repliche. Nell'appendice G sono elencati questi valori per ogni intervallo temporale, insieme ai percentili delle abbondanze medie totali delle metapopolazioni alla fine delle simulazioni. Si ricorda che le simulazioni sono fatte correre con 100 repliche, per 50 anni (intervallo di tempo annuale).

Per tutti e tre i paesaggi le traiettorie della popolazione mostrano un trend generale di diminuzione nelle abbondanze delle metapopolazioni, fino alla fine della simulazione. Questo trend di diminuzione risulta maggiore nella prima metà della simulazione, rispetto la seconda (Fig. 4.10 e Tab. 4.7), a parte un piccolo aumento iniziale. Le piccole oscillazioni che si possono osservare nelle figure sono conseguenza delle fluttuazioni demografiche dovute alla stocasticità ambientale implementata nel modello attraverso i coefficienti di variazione della carrying capacity, del tasso di fecondità e del tasso di sopravvivenza.

⁽segue a pagina successiva)

Fig. 4.10 Abbondanze della metapopolazione (N) attraverso il tempo, espresso in anni: (a) nel paesaggio del Lamone, (b) nel paesaggio di Viterbo e (c) nel paesaggio della Sabina. La curva indica le abbondanze medie, gli intervalli mostrano le abbondanze corrispondenti a ± 1 di deviazione standard e i pallini rossi le abbondanze minime e massime di tutte le repliche. Le abbondanze dei paesaggi per ogni intervallo temporale sono elencati in appendice G.

Il paesaggio del Lamone, quello con la metapopolazione più numerosa, è anche quello con le abbondanze medie maggiori alla fine delle simulazioni (1.830 individui). A seguire il paesaggio della Sabina (1.569 individui) e quindi quello di Viterbo (1.331 individui; Tab. 4.7 e appendice G). Le abbondanze medie finali corrispondono alle minime abbondanze registrate durante tutto il periodo di tempo della simulazione. Le mediane delle distribuzione (50° percentile) delle abbondanze finali dei paesaggi sono concordanti con quelle medie (1.811 individui per il Lamone, 1.506 individui per la Sabina e 1.257 individui per Viterbo; appendice G). Il paesaggio del Lamone, che presenta la metapopolazione più grande sia ad inizio che a fine simulazione, è quello in cui la diminuzione delle abbondanze risulta più marcata rispetto gli altri due paesaggi (Tab. 4.7).

Тетро	Abbondanza media delle metapopolazioni			
	Lamone	Viterbo	Sabina	
0	4.075	1.987	2.337	
25	2.263	1.544	1.844	
50	1.830	1.331	1.569	

Tab. 4.7 Abbondanze medie delle metapopolazioni all'inizio, a metà e alla fine del periodo di tempo della simulazione per i tre paesaggi. I dati sono estratti dalle tabelle presenti nell'appendice G.

L'occupancy della metapopolazione proietta il numero delle popolazioni presenti (e quindi il numero dei patch occupati) nel tempo. La figura 4.11a mostra l'occupancy della metapopolazione nel paesaggio del Lamone, la figura 4.11b nel paesaggio di Viterbo e la figura 4.11c nella Sabina. Le figure mostrano il numero medio delle popolazioni presenti di tutte le repliche, il numero delle popolazioni corrispondenti a \pm 1 di deviazione standard e il numero delle popolazioni minimo e massimo di tutte le repliche (come nelle figure precedenti). Nell'appendice H sono elencati questi valori per ogni intervallo di tempo.

Il numero delle popolazioni in tutti e tre i paesaggi diminuisce progressivamente fino alla fine del periodo di tempo simulato. Come per le abbondanze, il numero delle popolazioni diminuisce 71

maggiormente nella prima metà della simulazione rispetto la seconda (Fig. 4.11 e Tab. 4.8). Nel paesaggio del Lamone e di Viterbo si può notare, inoltre, un cambio di pendenza della curva tra il secondo ed il terzo intervallo temporale (Fig. 4.11a e Fig. 4.11b). Questa variazione nel trend del numero delle popolazioni presenti è da relazionare con il contenuto aumento delle abbondanze che si sono registrate nei primi intervalli temporali.

(segue a pagina successiva)

Fig. 4.11 Numero delle popolazioni presenti attraverso il tempo, espresso in anni: (a) nel paesaggio del Lamone, (b) nel paesaggio di Viterbo e (c) nel paesaggio della Sabina. La curva indica il numero medio delle popolazioni presenti, gli intervalli mostrano il numero delle popolazioni corrispondenti a ± 1 di deviazione standard e i pallini rossi il numero delle popolazioni minimo e massimo di tutte le repliche. Il numero delle popolazioni dei paesaggi per ogni intervallo temporale sono elencati in appendice H.

Il paesaggio con il maggior numero di popolazioni ad inizio simulazione, il Lamone, è anche quello che è rimasto con il maggior numero di popolazioni a fine simulazione (122 popolazioni). Viterbo, invece, è rimasto a fine simulazione con 78 popolazioni e la Sabina con 43 (Tab. 4.8 e appendice H). I paesaggi del Lamone e di Viterbo, quelli con più numero di popolazioni locali ad inizio e a fine simulazione, sono anche quelli in cui si estinguono localmente più popolazioni, rispetto il paesaggio della Sabina (Tab. 4.8).

Tab. 4.8 Numero medio delle popolazioni presenti all'inizio, a metà e alla fine del periodo di tempo della simulazione per i tre paesaggi. I dati sono estratti dalle tabelle presenti nell'appendice H.

Tempo	Occupan	Occupancy media delle metapopolazioni							
	Lamone	Viterbo	Sabina						
0	189	149	63						
25	139	93	47						
50	122	78	43						

4.4 Simulazioni con scenari di cambiamento dell'habitat

Sono stati fatti correre i modelli con quattro tipi di scenario di cambiamento dell'habitat per ogni paesaggio. Due tipi simulano gli effetti del processo di perdita di habitat, togliendo prima il 25% e poi il 50% dell'habitat medio presente nei tre paesaggi che compongono l'area di studio. Gli altri due scenari simulano gli effetti del processo di frammentazione, togliendo sempre la stessa quantità di habitat. Nel testo i termini perdita del 25% o 50% di habitat e frammentazione del 25% o 50% di habitat si riferiscono a questi tipi di simulazione.

4.4.1 Paesaggio del Lamone

Le mappe della metapopolazione di inizio simulazione per il paesaggio del Lamone, negli scenari di cambiamento dell'habitat, sono riportate nell'appendice I. Nella tabella 4.9 sono invece elencate le principali statistiche relative al paesaggio, le stesse presentate per gli scenari di non cambiamento dell'habitat. I dati relativi agli scenari di cambiamento presenti nella tabella sono estratti dalle appendici J e K.

Mentre il numero di patch occupati nel paesaggio del Lamone, ad inizio simulazione, è leggermente diminuito negli scenari di perdita di habitat, rispetto lo scenario di non cambiamento, la frammentazione ha determinato un sostanziale aumento del numero di patch idonei (anche se molto più piccoli). In particolare la frammentazione del 25% di habitat ha determinato un incremento di ben 47 patch occupati dalle popolazioni rispetto lo scenario di non cambiamento. La frammentazione del 50% di habitat, invece, non ha determinato un aumento sostanziale del numero di popolazioni presenti ad inizio simulazione, se confrontato con lo scenario di frammentazione del 25% di habitat (Tab. 4.9).

La numerosità, ad inizio simulazione, delle metapopolazioni del Lamone risulta minore, in maniera proporzionale, alla quantità di habitat idoneo sottratto dal paesaggio; ma le differenze tra gli scenari di perdita e di frammentazione dell'habitat non sono significative. Nelle simulazioni in cui si è sottratto il 25% di habitat dal paesaggio, la metapopolazione si è ridotta in media di circa 730 individui, in quelle in cui si è sottratto il 50% di habitat di circa 1.466 individui. I valori di carrying capacity e di habitat suitability (medio e totale) del paesaggio sono diminuiti negli scenari di cambiamento dell'habitat, in proporzione, nella stessa maniera della numerosità delle metapopolazioni (Tab. 4.9).

La frammentazione dell'habitat ha inoltre diminuito drasticamente le dimensioni medie dei patch nel paesaggio del Lamone, rispetto lo scenario di non cambiamento. Anche la perdita di habitat ha determinato ridotte dimensioni medie dei patch, ma in misura molto minore. L'indice di forma medio dei patch si è quindi alzato maggiormente negli scenari di frammentazione rispetto quelli di perdita di habitat (Tab. 4.9).

Tab. 4.9 Numero dei patch occupati all'inizio della simulazione, idoneità ambientale media (Media HS) e totale (Tot. HS), carrying capacity (Tot. K) e initial abundance (Tot. Init. Abund.) del paesaggio e indici geometrici (percentuale di estensione di habitat idoneo nel paesaggio, dimensioni medie e rapporto medio tra i perimetri e le aree dei patch) del paesaggio del Lamone negli scenari di cambiamento e non. I dati relativi agli scenari di non cambiamento sono estratti dalle tabelle presenti nelle appendici E e F, mentre i dati relativi agli scenari di cambiamento dalle tabelle presenti nelle appendici J e K.

Scenario	Numero patch occupati	Media HS	Tot. HS	Tot. K	Tot. Init. Abund.	Estensione habitat idoneo nel paesaggio (%)	Dimensione media dei patch (km ²)	Perimetro / Area medio (1/km)
No change	189	0,34	853.190	6.974	4.075	33,57%	0,40	16,63
Perdita 25%	184	0,28	696.725	5.727	3.348	27,58%	0,38	18,77
Perdita 50%	178	0,22	544.714	4.477	2.619	21,52%	0,31	20,62
Framm. 25%	236	0,28	694.918	5.710	3.341	27,58%	0,29	19,54
Framm. 50%	239	0,22	540.120	4.438	2.597	21,52%	0,23	22,18

Le traiettorie e le occupancy della metapopolazione del Lamone, per gli scenari di cambiamento dell'habitat, sono riportate rispettivamente nelle appendici L e M. Nella figura 4.12 le traiettorie vengono invece confrontate tra di loro e con quelle dello scenario di non cambiamento.

Come si può notare dalle figure negli scenari di perdita e frammentazione la numerosità delle metapopolazioni del Lamone è diminuita progressivamente fino alla fine delle simulazioni; diminuzione che è risultata più accentuata nella prima metà del periodo di tempo simulato (Fig. 4.12 e Tab. 4.10), come già visto negli scenari di non cambiamento dell'habitat. Sottraendo il 25% di habitat, sia nella perdita che nella frammentazione, la numerosità della metapopolazione risulta essere minore solo all'inizio del periodo di tempo simulato, per poi avvicinarsi e quasi coincidere con la numerosità dello scenario di non cambiamento. Diversamente, sottraendo il 50% di habitat, l'abbondanza della metapopolazione in entrambi i casi rimane minore per tutto il periodo di tempo della simulazione. In generale non si sono registrate differenze sostanziali tra i processi di perdita e frammentazione, a parte una numerosità media di poco inferiore delle metapopolazioni negli scenari di frammentazione.

(segue a pagina successiva)

Fig. 4.12 Traiettorie della metapopolazione del paesaggio del Lamone: le curve in nero mostrano lo scenario di non cambiamento, quelle in blu tratteggiato la perdita (a) e la frammentazione (b) del 25% di habitat e quelle in rosso tratteggiato la perdita (a) e la frammentazione (b) del 50% di habitat. Nel grafico (c) sono messe a confronto le traiettorie relative alla perdita (in nero) e frammentazione (in blu tratteggiato) del 50% di habitat, le stesse presenti in (a) e (b). Le abbondanze della metapopolazione ad ogni intervallo temporale per gli scenari di cambiamento dell'habitat sono riportate nell'appendice L, insieme alle singole curve.

Nella figura 4.13 le occupancy della metapopolazione vengono confrontate tra di loro. Le occupancy della metapopolazione del Lamone sono diminuite progressivamente fino alla fine del periodo di tempo delle simulazioni negli scenari di cambiamento dell'habitat, sia di perdita che di frammentazione (Fig. 4.13 e Tab. 4.10). Come nello scenario di non cambiamento, la riduzione del numero delle popolazioni è stata maggiore nella prima metà delle simulazioni rispetto la seconda. Nella perdita il numero delle popolazioni nel tempo è diminuito in misura maggiore, rispetto lo scenario di non cambiamento, soprattutto nella perdita del 50% di habitat. Il processo di frammentazione, però, è quello che ha determinato la riduzione nel tempo del numero delle popolazioni più marcata.

(segue a pagina successiva)

Fig. 4.13 Occupancy della metapopolazione del paesaggio del Lamone: le curve in nero mostrano lo scenario di non cambiamento, quelle in blu tratteggiato la perdita (a) e la frammentazione (b) del 25% di habitat e quelle in rosso tratteggiato la perdita (a) e la frammentazione (b) del 50% di habitat. Nel grafico (c) sono messe a confronto le occupancy relative alla perdita (in nero) e frammentazione (in blu tratteggiato) del 50% di habitat, le stesse presenti in (a) e (b). Il numero delle popolazioni presenti ad ogni intervallo temporale per gli scenari di cambiamento dell'habitat è riportato nell'appendice M, insieme alle singole curve.

Tab.	4.10 Abbondanze	medie del	le metapopo	lazioni e numero	medio	delle popolazioni	(occupand	y media	delle
meta	popolazioni) all'inizi	io, a metà e	e alla fine del	periodo di tempo	delle sin	nulazioni per il pae	saggio del	Lamone.	I dati
sono	estratti	dalle	tabelle	presenti	nelle	appendici	L	е	М.

Tempo	Abb	ondanza m	edia delle r	netapopola	zioni	Occupancy media delle metapopolazioni					
	No change	Perdita 25%	Perdita 50%	Frammen tazione 25%	Frammen tazione 50%	No change	Perdita 25%	Perdita 50%	Frammen tazione 25%	Frammen tazione 50%	
0	4.075	3.348	2.619	3.341	2.597	189	184	178	236	239	
25	2.263	2.272	1.801	2.192	1.713	139	135	124	164	150	
50	1.830	1.764	1.386	1.737	1.326	122	116	103	140	121	

4.4.2 Paesaggio di Viterbo

Per quanto riguarda il paesaggio di Viterbo le mappe della metapopolazione di inizio simulazione, negli scenari di cambiamento dell'habitat, sono mostrate nell'appendice N e le principali statistiche relative al paesaggio nella tabella 4.11 (dati estratti dalle appendici O e P per gli scenari di cambiamento).

Il numero di patch occupati nel paesaggio di Viterbo, ad inizio simulazione, è diminuito in misura maggiore che nel paesaggio del Lamone negli scenari di perdita di habitat; in particolare la perdita del 50% di habitat ha determinato la scomparsa di ben 103 popolazioni ad inizio simulazione (Tab. 4.11). A differenza del paesaggio del Lamone, mentre la frammentazione del 25% di habitat ha determinato del numero di patch idonei, questi sono diminuiti nello scenario di frammentazione del 50% di habitat (Tab. 4.11).

Le differenze nella numerosità delle metapopolazioni, ad inizio simulazione, del paesaggio di Viterbo sono le stesse evidenziate per il paesaggio del Lamone: la numerosità risulta minore sottraendo habitat dal paesaggio, ma le differenze tra gli scenari di perdita e di frammentazione dell'habitat non sono state evidenti. Inoltre, le metapopolazioni, nei vari scenari, risultano ridotte circa nella stessa misura del paesaggio precedentemente analizzato. Così anche la carrying capacity e i valori di habitat suitability (medio e totale) del paesaggio si sono ridotte in proporzione nella stessa maniera dell'abbondanza iniziale delle metapopolazioni (Tab. 4.11).

Gli scenari di perdita di habitat nel paesaggio di Viterbo hanno determinato ridotte dimensioni medie dei patch, ma in maniera molto minore rispetto gli scenari di frammentazione, come visto per il Lamone. La differenza tra i due paesaggi è stata nella misura in cui la frammentazione ha diminuito le dimensioni medie dei patch, presentando per Viterbo valori molto inferiori. Nello specifico per lo scenario di frammentazione del 25% di habitat le dimensioni medie dei patch sono risultate di soli 0,122 km², per la frammentazione del 50% di habitat di appena 0,083 km². Questa differenza è stata riscontrata anche nei valori dell'indice di forma medio dei patch (Tab. 4.11).

Risulta importante considerare che sottraendo il 50% della quantità di habitat medio presente nei tre paesaggi, come da protocollo, il paesaggio di Viterbo rimane con appena il 4,67% di habitat residuo.

Tab. 4.11 Numero dei patch occupati all'inizio della simulazione, idoneità ambientale media (Media HS) e totale (Tot. HS), carrying capacity (Tot. K) e initial abundance (Tot. Init. Abund.) del paesaggio e indici geometrici (percentuale di estensione di habitat idoneo nel paesaggio, dimensioni medie e rapporto medio tra i perimetri e le aree dei patch) del paesaggio di Viterbo negli scenari di cambiamento e non. I dati relativi agli scenari di non cambiamento sono estratti dalle tabelle presenti nelle appendici E e F, mentre i dati relativi agli scenari di cambiamento dalle tabelle presenti nelle appendici O e P.

Scenario	Numero patch occupati	Media HS	Tot. HS	Tot. K	Tot. Init. Abund.	Estensione habitat idoneo nel paesaggio (%)	Dimensione media dei patch (km ²)	Perimetro / Area medio (1/km)
No change	149	0,16	413.641	3.392	1.987	16,43%	0,280	23,72
Perdita 25%	108	0,10	259.705	2.172	1.275	10,43%	0,250	24,28
Perdita 50%	46	0,05	119.952	1.004	587	4,67%	0,268	24,27
Framm. 25%	216	0,10	252.803	2.123	1.250	10,43%	0,122	28,12
Framm. 50%	137	0,05	107.034	907	541	4,67%	0,083	32,00

Le traiettorie e le occupancy della metapopolazione di Viterbo per gli scenari di cambiamento dell'habitat sono riportate rispettivamente nelle appendici Q e R, mentre nella figura 4.14 le traiettorie vengono confrontate tra di loro e con quelle dello scenario di non cambiamento.

Negli scenari di cambiamento dell'habitat la numerosità della metapopolazione di Viterbo diminuisce, come sempre, in misura maggiore nella prima metà delle simulazioni (Fig. 4.14 e Tab. 4.12). A differenza del Lamone, a Viterbo sia la sottrazione del 25% che quella del 50% di habitat ha determinato una riduzione dell'abbondanza della metapopolazione, rispetto lo scenario di non cambiamento, per tutto il periodo di tempo simulato, non solo all'inizio. Ma la differenza più importante si è registrata tra gli scenari di perdita e frammentazione del 50% di habitat. Sebbene i due scenari siano iniziati con una numerosità di poco differente (scarto di 46 individui a favore della perdita), la frammentazione del 50% di habitat ha determinato una drastica diminuzione della numerosità della metapopolazione, fino ad arrivare ad appena 124 individui presenti in tutto il paesaggio.

(segue a pagina successiva)

Fig. 4.14 Traiettorie della metapopolazione del paesaggio di Viterbo: le curve in nero mostrano lo scenario di non cambiamento, quelle in blu tratteggiato la perdita (a) e la frammentazione (b) del 25% di habitat e quelle in rosso tratteggiato la perdita (a) e la frammentazione (b) del 50% di habitat. Nel grafico (c) sono messe a confronto le traiettorie relative alla perdita (in nero) e frammentazione (in blu tratteggiato) del 50% di habitat, le stesse presenti in (a) e (b). Le abbondanze della metapopolazione ad ogni intervallo temporale per gli scenari di cambiamento dell'habitat sono riportate nell'appendice Q, insieme alle singole curve.

Nella figura 4.15 le occupancy della metapopolazione vengono confrontate tra di loro. Anche le occupancy della metapopolazione del paesaggio di Viterbo diminuiscono fino alla fine, negli scenari di cambiamento dell'habitat, maggiormente nei primi anni delle simulazioni (Fig. 4.15 e Tab. 4.12). La differenza sostanziale con il paesaggio del Lamone è nel tasso di riduzione del numero delle popolazioni nel tempo, con appena 16 popolazioni rimanenti sia nello scenario di perdita che di frammentazione del 50% di habitat. Se il numero delle popolazioni rimanenti si confronta con quello di inizio simulazione ci si accorge che il tasso di riduzione ha raggiunto livelli molto alti nello scenario di frammentazione del 50% di habitat.

Nell'insieme, quindi, lo scenario di frammentazione del 50% di habitat risulta molto pericoloso per la vitalità della metapopolazione del paesaggio di Viterbo, riducendola a soli 124 individui e a sole 16 popolazioni a fine simulazione, come già sottolineato (Tab. 4.12).

(segue a pagina successiva)

Fig. 4.15 Occupancy della metapopolazione del paesaggio di Viterbo: le curve in nero mostrano lo scenario di non cambiamento, quelle in blu tratteggiato la perdita (a) e la frammentazione (b) del 25% di habitat e quelle in rosso tratteggiato la perdita (a) e la frammentazione (b) del 50% di habitat. Nel grafico (c) sono messe a confronto le occupancy relative alla perdita (in nero) e frammentazione (in blu tratteggiato) del 50% di habitat, le stesse presenti in (a) e (b). Il numero delle popolazioni presenti ad ogni intervallo temporale per gli scenari di cambiamento dell'habitat è riportato nell'appendice R, insieme alle singole curve.

Tab.	4.12	Abbondanze	medie	delle	metapopolazioni	е	numero	medio	delle	popolazioni	(occupancy	media	delle
meta	popol	azioni) all'iniz	io, a m	età e d	alla fine del perio	do	di tempo	delle s	imulaz	zioni per il pa	iesaggio di V	'iterbo.	I dati
sono	estrat	ti dalle tabell	e presei	nti nel	le appendici Q e R.								

Tempo	Abl	bondanza m	edia delle n	netapopolaz	ioni	Occupancy media delle metapopolazioni				
	No change	Perdita 25%	Perdita 50%	Framment azione 25%	Framment azione 50%	No change	Perdita 25%	Perdita 50%	Framment azione 25%	Framment azione 50%
0	1.987	1.275	587	1.250	541	149	108	46	216	137
25	1.544	969	480	866	263	93	61	22	98	33
50	1.331	758	323	586	124	78	48	16	70	16

4.4.3 Paesaggio della Sabina

Le mappe della metapopolazione di inizio simulazione per il paesaggio della Sabina, negli scenari di cambiamento dell'habitat, sono riportate nell'appendice S. Le principali statistiche relative al paesaggio (estratte dalle appendici T e U per i dati relativi gli scenari di cambiamento) sono elencate nella tabella 4.13.

Le differenze nel numero di patch occupati ad inizio simulazione nel paesaggio della Sabina negli scenari di cambiamento dell'habitat, rispetto quelli di non cambiamento, sono risultate le stesse analizzate per gli altri paesaggi: diminuzione con la perdita di habitat e incremento con la frammentazione (Tab. 4.13). Come già evidenziato, nell'insieme il numero di patch occupati risulta nettamente inferiore rispetto gli altri paesaggi, in tutti gli scenari considerati.

Anche la numerosità di inizio simulazione delle metapopolazioni del paesaggio della Sabina si riduce, in proporzione, nello stesso modo degli altri paesaggi. Le differenze nella numerosità tra gli

scenari di perdita e di frammentazione sono risultate solo di poco più marcate. La carrying capacity e l'habitat suitability (medio e totale) del paesaggio sono quindi diminuiti di conseguenza, come visto per gli altri due paesaggi (Tab. 4.13).

Le dimensioni dei patch della Sabina si sono ridotte maggiormente negli scenari di frammentazione, rispetto quelli di perdita, come sempre. Considerando che il paesaggio presenta mediamente le dimensioni maggiori dei patch rispetto gli altri paesaggi nello scenario di non cambiamento, le differenze nelle dimensioni medie dei patch registrate risultano generalmente maggiori in tutti gli scenari di cambiamento dell'habitat. L'indice di forma dei patch è quindi aumentato negli scenari di cambiamento, soprattutto in quelli di frammentazione (Tab. 4.13).

Nel paesaggio della Sabina la riduzione del 50% della quantità di habitat medio presente nei tre paesaggi porta il paesaggio ad avere solamente il 7,67% di habitat rimanente.

Tab. 4.13 Numero dei patch occupati all'inizio della simulazione, idoneità ambientale media (Media HS) e totale (Tot. HS), carrying capacity (Tot. K) e initial abundance (Tot. Init. Abund.) del paesaggio e indici geometrici (percentuale di estensione di habitat idoneo nel paesaggio, dimensioni medie e rapporto medio tra i perimetri e le aree dei patch) del paesaggio della Sabina negli scenari di cambiamento e non. I dati relativi agli scenari di non cambiamento sono estratti dalle tabelle presenti nelle appendici E e F, mentre i dati relativi agli scenari di cambiamento dalle tabelle presenti nelle appendici T e U.

Scenario	Numero patch occupati	Media HS	Tot. HS	Tot. K	Tot. Init. Abund.	Estensione habitat idoneo nel paesaggio (%)	Dimensione media dei patch (km ²)	Perimetro / Area medio (1/km)
No change	63	0,19	496.183	3.977	2.337	19,23%	0,78	18,14
Perdita 25%	61	0,14	330.696	2764	1.628	13,28%	0,56	19,44
Perdita 50%	50	0,08	193.953	1631	965	7,67%	0,40	19,52
Framm. 25%	126	0,14	323.332	2698	1.587	13,28%	0,264	22,94
Framm. 50%	118	0,08	178.905	1500	894	7,67%	0,159	26,78

Le traiettorie e le occupancy della metapopolazione del paesaggio della Sabina per gli scenari di cambiamento dell'habitat sono riportate rispettivamente nelle appendici V e W. Nella figura 4.16 le traiettorie vengono invece confrontate tra di loro e con quelle dello scenario di non cambiamento.

Le abbondanze della metapopolazione del paesaggio della Sabina diminuiscono progressivamente fino alla fine delle simulazioni (Fig. 4.16 e Tab. 4.14). Questa volta solo negli scenari di frammentazione la diminuzione risulta più marcata nella prima metà del periodo di tempo simulato, rispetto la seconda. Come per Viterbo, la numerosità delle metapopolazioni negli scenari di cambiamento dell'habitat rimane sempre minore nel corso della simulazione rispetto quella dello scenario di non cambiamento. La differenza tra gli scenari di perdita e di frammentazione non sono così marcate come per il paesaggio di Viterbo, presentando comunque sempre un trend "a favore" della perdita.

(segue a pagina successiva)

Fig. 4.16 Traiettorie della metapopolazione del paesaggio della Sabina: le curve in nero mostrano lo scenario di non cambiamento, quelle in blu tratteggiato la perdita (a) e la frammentazione (b) del 25% di habitat e quelle in rosso tratteggiato la perdita (a) e la frammentazione (b) del 50% di habitat. Nel grafico (c) sono messe a confronto le traiettorie relative alla perdita (in nero) e frammentazione (in blu tratteggiato) del 50% di habitat, le stesse presenti in (a) e (b). Le abbondanze della metapopolazione ad ogni intervallo temporale per gli scenari di cambiamento dell'habitat sono riportate nell'appendice V, insieme alle singole curve.

Nella figura 4.17 sono le occupancy della metapopolazione ad essere confrontate tra di loro. Esse sono diminuite maggiormente nella prima metà delle simulazioni per tutti gli scenari di cambiamento dell'habitat (Fig. 4.17 e Tab. 4.14). Alla fine delle simulazioni nello scenario di perdita del 50% di habitat sono rimaste appena 20 popolazioni, in quello di frammentazione del 50% di habitat 29 popolazioni. Ma, considerando il numero delle popolazioni presenti all'inizio, la frammentazione ha determinato un tasso di riduzione del numero delle popolazioni presenti nel tempo molto maggiore rispetto la perdita.

(segue a pagina successiva)

Fig. 4.17 Occupancy della metapopolazione del paesaggio della Sabina: le curve in nero mostrano lo scenario di non cambiamento, quelle in blu tratteggiato la perdita (a) e la frammentazione (b) del 25% di habitat e quelle in rosso tratteggiato la perdita (a) e la frammentazione (b) del 50% di habitat. Nel grafico (c) sono messe a confronto le occupancy relative alla perdita (in nero) e frammentazione (in blu tratteggiato) del 50% di habitat, le stesse presenti in (a) e (b). Il numero delle popolazioni presenti ad ogni intervallo temporale per gli scenari di cambiamento dell'habitat è riportato nell'appendice W, insieme alle singole curve.

Tab. 4.14 Abbondanze medie delle metapopolazioni e numero medio delle popolazioni (occupancy media delle metapopolazioni) all'inizio, a metà e alla fine del periodo di tempo delle simulazioni per il paesaggio della Sabina. I dati sono estratti dalle tabelle presenti nelle appendici V e W.

Tempo	Abl	bondanza m	edia delle r	netapopolaz	ioni	Occupancy media delle metapopolazioni				
	No change	Perdita 25%	Perdita 50%	Framment azione 25%	Framment azione 50%	No change	Perdita 25%	Perdita 50%	Framment azione 25%	Framment azione 50%
0	2.337	1.628	965	1.587	894	63	61	50	126	118
25	1.844	1.328	737	1.260	538	47	40	27	79	51
50	1.569	1.046	541	1.026	300	43	33	20	64	29

5 DISCUSSIONE

Il risultato più rilevante di questa ricerca è che, in paesaggi caratterizzati da un alto grado di perdita e frammentazione dell'habitat, il processo di frammentazione *per se* provoca un impatto maggiore, rispetto quello di perdita di habitat, sulla vitalità delle popolazioni di moscardino.

Le differenze più marcate tra gli scenari di perdita di habitat e frammentazione, si sono registrate nei tassi di occupancy delle popolazioni spazialmente strutturate che, negli scenari di frammentazione, hanno ridotto in misura maggiore, e per alcuni paesaggi drasticamente, il numero di patch occupati e quindi di popolazioni presenti. Anche le abbondanze complessive delle popolazioni, e quelle delle singole popolazioni locali, si sono ridotte in misura maggiore negli scenari di frammentazione, ma in maniera meno evidente.

La simulazione delle dinamiche di popolazione nei modelli, attraverso gli scenari di non cambiamento dell'habitat, hanno mostrato invece come le popolazioni di moscardino subiscano un trend generale di declino nei paesaggi frammentati oggetto d'indagine, sia in termini di numero di individui presenti (abbondanze delle popolazioni) che, soprattutto, di numero di popolazioni (occupancy delle metapopolazioni) che rimangono nel tempo.

5.1 Considerazioni sulle caratteristiche demografiche delle popolazioni campionate

Le abbondanze annuali in questa ricerca sono state espresse tramite un apposito indice, invece che con un normale valore di densità. L'obiettivo iniziale era quello di utilizzare la tecnica di cattura-marcatura-ricattura (CMR) per il calcolo delle densità. Ma, a seguito di un basso numero di ricatture, si pensa dovuto alla tecnica di marcatura (PIT-tag), si è deciso di adottare un apposito indice di abbondanza che esprimesse, appunto, le abbondanze annuali. Questo indice è stato calcolato tramite il rapporto tra il numero di individui marcati e l'area della griglia, comprensiva di boundary strip, per ciascun patch. Le abbondanze stagionali e mensili sono state invece espresse con un valore di densità in quanto si è ritenuto trascurabile l'effetto generato dai fenomeni di immigrazione ed emigrazione nelle dinamiche di popolazione.

E' stato utilizzato il boundary strip per correggere l'errore di stima della densità, errore dovuto al fatto che molte volte l'area effettivamente campionata in un patch risulta inferiore alle dimensioni del patch stesso (krebs 1999). In questi casi le densità calcolate tendono ad essere sovrastimate, rispetto quelle reali, in quanto una parte degli individui campionati possono presentare una porzione dei loro home range al di fuori dell'area della griglia. Di conseguenza, per avere un valore di densità reale, bisogna aggiungere il boundary strip, una zona di buffer intorno all'area della griglia (Krebs 1999). In questa ricerca il boundary strip è stato calcolato con il metodo proposto da Bondrup-Nielsen (1983) che si basa, appunto, sull'utilizzo degli home range (Santarelli 2011).

Nella stagione di campionamento 2010 la densità media annuale delle popolazioni di moscardino (calcolata come media delle densità stagionali di tutti i patch) è risultata di 1,08 individui/ha, inferiore alle medie europee: in Italia sono state riscontrate densità di 4-8 individui/ha, mentre in Inghilterra di 3-11 individui/ha (Bright *et al.* 2006) e in Lituania di 0,6-2,3 individui/ha (Juškaitis 2008). I motivi della discordanza con le medie europee possono dipendere sia da fattori ecologici e ambientali, sia da errori causati da diversi metodi utilizzati per la stima delle densità. Infatti, alcuni

valori possono essere sovrastimati a causa delle piccoli dimensioni dell'area, dell'assenza di boundary strip e dall'alta densità di cassette nido (Juškaitis 2008). Si raccomanda di applicare, laddove possibile, stime mediante modelli CMR, che permetteranno la confrontabilità delle stime poiché tengono conto della probabilità di cattura individuale.

Dalle variazioni di abbondanza delle popolazioni, nelle due stagioni di campionamento, è emerso inoltre che la dinamica di popolazione risulta caratterizzata da un minimo della numerosità in corrispondenza dei mesi estivi luglio-settembre. Si ipotizza che questo minimo sia dovuto ad un calo nell'utilizzo delle cassette nido a causa dell'eccessivo calore sviluppato all'interno di esse, piuttosto che ad un'effettiva diminuzione della popolazione. Si esclude, pertanto, il fenomeno dell'estivazione ipotizzato per la specie in Italia centrale (Amori *et al.* 2008) poiché individui attivi sono stati catturati (e monitorati mediante radio-tracking) in quel periodo.

Come abbiamo visto il rapporto sessi delle popolazioni è passato da una netta predominanza di femmine (circa un maschio ogni due femmine) nell'anno 2010, ad una situazione più equilibrata nell'anno 2011, ma comunque sempre a favore delle femmine (SR = 0,96). In contrapposizione con questi risultati, altri studi mostrano come il moscardino presenti una sex ratio piuttosto costante: alla nascita è prossima a 1:1, mentre tra i giovani di un anno e tra gli adulti si manifesta una leggera predominanza di maschi (Juškaitis 2008, Berg & Berg 1999). In base ai risultati ottenuti in questa ricerca, d'altronde, questa discordanza non sembra essere dovuta a fattori legati alla frammentazione (Santarelli 2011), sebbene alterazioni della sex ratio dovute a fattori legati alla frammentazione siano state dimostrate dai lavori di Aars *et al*. (1995) e Yu & Lu (2011).

Dalle analisi delle variazioni della struttura della popolazione nel corso dei due anni è emerso invece che i mesi estivi risultano essere i periodi con la maggior incidenza di juvenile, mentre i periodi antecedenti l'inverno quelli con la maggior incidenza di sub-adulti. Non si conoscono i vantaggi selettivi di questa strategia riproduttiva, ma sono coerenti con altri studi condotti sul moscardino in ambiente mediterraneo (Panchetti *et al.* 2004; Amori *et al.* 2008).

5.2 Attendibilità del protocollo utilizzato per la parametrizzazione dei modelli di popolazione spazialmente espliciti

Il tasso di fertilità, utilizzato per parametrizzare i modelli di popolazione spazialmente espliciti, si basa sulle dimensioni medie della cucciolata (numero di piccoli nati per femmina), non avendo a disposizione individui morti per contare il numero di ferite placentali delle femmine riproduttive. Questa approssimazione viene comunemente adottata nella parametrizzazione di questi modelli e diversi autori hanno utilizzato questo approccio (Akcakaya *et al.* 2004; Stevens & Baguette 2008; Haines *et al.* 2006; Root 2004). La dimensione della cucciolata delle popolazioni di moscardino in questa ricerca è risultata essere in media di 4,6 (CV = 0,4). In confronto con altri roditori, le capacità riproduttive del moscardino risultano piuttosto limitate. Anche se le dimensioni delle cucciolate possono raggiungere i 9 juvenile, ad esempio in Moldavia (Lozan 1970), la dimensione media della cucciolata per la specie risulta essere all'incirca di 4 juvenile (Juskaitis 2008). In Lituania, la dimensione della cucciolata media è stata trovata essere di 4,07 (Juskaitis 2008), mentre nelle regioni di Tula e Mosca di 4,5 juvenile (Likhachev 1966), in linea quindi con quanto risulta dalla presente ricerca. La più grande dimensione della cucciolata media nel moscardino è stata registrata nel Dorset (Inghilterra), con un valore che in media supera i 5 juvenile (Eden & Eden 2001).

Il tasso di accrescimento medio delle popolazioni tra gli anni 2010 e 2011 è risultato essere di 0,83, quindi minore di 1. Questo farebbe supporre che la popolazione stia effettivamente in declino, ma 89

quando il tasso di accrescimento di una popolazione è calcolato con dati relativi ad un periodo breve (ad esempio un anno), esso può descrivere solo lo stato attuale della popolazione e non una tendenza futura. Oltre ad un effettivo trend di declino della popolazione, quando il tasso di accrescimento è osservato essere minore di 1, questo può indicare che: 1) la popolazione si trovi sotto l'influenza di fluttuazioni stocastiche causate da fattori ambientali; 2) che la popolazione possa aver temporaneamente superato la carrying capacity del suo habitat e stia tornando (declinando) ad un equilibrio grazie ai meccanismi di densità-dipendenza (Akcakaya 2002).

Si sottolinea inoltre che il tasso di accrescimento medio delle popolazioni è, appunto, una media. In alcune aree il tasso è stato riscontrato essere positivo, in altre negativo, suggerendo dinamiche di tipo source-sink nelle popolazioni oggetto di indagine.

Nei modelli di popolazione spazialmente espliciti, in realtà, è necessario impostare un tasso massimo di accrescimento della popolazione (R_{max}) che serve al modello per considerare i fattori densità-dipendenti nelle dinamiche di popolazione. Poiché non si aveva a disposizione una serie storica delle abbondanze di popolazione di moscardino, per calcolare un tasso massimo di accrescimento, si è deciso di impostare un valore pari a 1,1 (valore minimo che si può impostare nel software Ramas GIS). Questo è giustificato dal fatto che un tasso di accrescimento medio è sicuramente inferiore ad un tasso di accrescimento massimo. La diminuzione delle abbondanze delle popolazioni spazialmente strutturate osservata nei modelli, nonostante R_{max} sia maggiore di 1, è dovuto alle numerose estinzioni delle popolazioni avvenute nei patch piccoli, soprattutto in contesti di isolamento da altri patch grandi.

Dai dati di cattura-marcatura-ricattura dell'anno di campionamento 2011 si è calcolato il tasso di sopravvivenza annuale, che è risultato pari a 0,001 (CV = 0,2). Questo vuol dire che solo lo 0,1% di individui sopravvive nel corso di un anno, risultando in definitiva un valore molto basso, soprattutto se confrontato con il tasso medio di accrescimento delle popolazioni riscontrato (R = 0,83). Studi sul moscardino condotti nel resto dell'Europa hanno trovato tassi di sopravvivenza annuali molto più alti (da 0,369 a 0,655; Juskaitis 2008). Con i dati finora raccolti si pensa che la stima del tasso di sopravvivenza, in questa ricerca, non sia stata molto accurata a causa delle ridotte dimensioni del campione e, soprattutto, del basso numero di ricatture. Dai successivi campionamenti, con un numero maggiore di individui campionati, si riusciranno ad avere sicuramente delle stime più robuste per questo parametro. Si è comunque condotta un'analisi di sensitività per valutare quanto la variazione del \pm 10% di questo parametro influisse sui risultati del modello. Dai risultati di quest'analisi si è visto che il modello è poco sensibile al tasso di sopravvivenza (scarto medio delle abbondanze finali = 76 individui; scarto medio del numero di popolazioni presenti alla fine delle simulazioni = 1,03 popolazioni).

La stima della carrying capacity in questa ricerca si è basata sui valori di densità massimi stagionali osservati nelle popolazioni campionate. Questi valori sono quindi stati relazionati, tramite una funzione lineare semplice, alla probabilità di presenza media dei vari patch (approccio comunemente adottato da diversi autori, ad esempio Griffin & Mills 2004; Lopez 2004; Gerber 2004). Questa metodologia si basa sull'assunto che la variabilità spaziale delle abbondanze delle popolazioni attuali rifletta la variabilità temporale delle abbondanze delle popolazioni. Infatti, avendo a disposizione una serie storica delle densità di una popolazione, si potrebbe individuare abbastanza precisamente la sua carrying capacity (Sezen *et al.* 2004). In altre parole, la probabilità di stimare la densità di una popolazione che stia esattamente alla carrying capacity è molto bassa, ma, quando il numero di popolazioni campionate aumenta, la probabilità di trovare una stessa proporzione di popolazioni che stia al di sotto e al di sopra della carrying capacity, e all'incirca nella stessa misura, diventa maggiore.

Un altro tipo di approccio, per implementare la carrying capacity nei modelli di popolazione spazialmente espliciti, prevede l'utilizzo degli home range. In questo caso la carrying capacity si

calcola tramite il rapporto tra le dimensioni dei patch e le dimensioni medie degli home range (Root 2004). In realtà molte specie in natura, come lo stesso moscardino, presentano home range parzialmente sovrapposti; quindi, per risultare realistico, questo approccio dovrebbe considerare anche la percentuale di sovrapposizione degli home range delle specie (Akcakaya & Raphael 1998). In questa ricerca, si è preferito utilizzare il primo approccio descritto, in quanto non si avevano a disposizione delle misure di sovrapposizione degli home range per il moscardino (Juskaitis 2008), rischiando quindi di sovrastimare la carrying capacity delle popolazioni.

L'initial abundance dei modelli è stata stimata nello stesso modo della carrying capacity ponendo, come tempo di inizio, il primo mese di campionamento. Si sono quindi relazionate le densità mensili del mese di maggio 2010, dei patch campionati, con i valori di probabilità di presenza medi dei patch. Questo approccio risulta largamente utilizzato da molti autori (ad esempio Griffin & Mills 2004; Lopez 2004; Sezen *et al.* 2004). D'altra parte, in questa ricerca, il modello di regressione lineare multipla, servito per relazionare le densità mensili alla probabilità di presenza media dei vari patch, non ha ricevuto un buon supporto dai dati ($R^2 = 0,039$). Questo è dovuto sicuramente al fatto che il campione era di ridotte dimensioni (N = 28). Il nostro obiettivo nell'utilizzo dei modelli di popolazione spazialmente espliciti, d'altronde, non è indirizzato a trovare dei valori assoluti che descrivano il comportamento futuro delle popolazioni, piuttosto dei risultati relativi sui fenomeni indagati (Brook *et al.* 2000; Coulson *et al.* 2001; Gerber 2004).

Il meccanismo di dispersione gioca un ruolo importante nella persistenza e vitalità delle popolazioni spazialmente strutturate (Root 2004; Lopez 2004; Akcakaya & Root 2002; Akcakaya *et al.* 1995; Wintle *et al.* 2005; Akcakaya 2000). L'approccio seguito in questa ricerca prevede la stima del tasso di dispersione tra una popolazione e l'altra in funzione della distanza che separa le due popolazioni, in accordo con la funzione dispersal-distance (Akcakaya 2002). La distanza tra due popolazioni è stata calcolata come la distanza più vicina tra i margini dei patch che le contengono. Questo approccio si basa sull'assunto che la probabilità che un individuo in dispersione raggiunga un altro patch sia una funzione della distanza che deve percorrere (Lindenmayer *et al.* 2001; Possingham & Davies 1995; Sezen *et al.* 2004; Root 2004; Wintle *et al.* 2005).

Le distanze medie di dispersione di una specie (distanza che un individuo può percorrere senza contattare un altro patch prima di morire), sono di solito stimate attraverso l'utilizzo di dati di radio-tracking (Lindenmayer *et al.* 2001; Akcakaya & Raphael 1998; Griffin & Mills 2004; Root 2004). Risulta però necessario avere un campione molto grande di individui perché la stima possa essere accurata e realistica. L'approccio seguito in questa ricerca, pertanto, si basa sulla distanza media che separa un patch, che è stato osservato essere occupato durante il campionamento, ed un patch probabilmente occupato secondo il modello di probabilità di presenza (HS > 0,5). Questo metodo risulta tanto più accurato, quanto più realistico si assuma essere il modello di probabilità di presenza.

Un altro parametro della funzione dispersal-distance è la proporzione di individui che va in dispersione da una popolazione ad un'altra (parametro a della funzione). Molte ricerche che indagano le capacità dispersive del moscardino, come d'altronde la nostra, studiano i movimenti del moscardino entro l'habitat idoneo della specie (entro un patch; Juskaitis 2008; Bright *et al.* 1994; Bright & Morris 1996; Buchner 2008; Wolton 2009). Pertanto i meccanismi di movimento, e dispersione, del moscardino nella matrice risultano assolutamente sconosciuti. Gli unici lavori a riguardo sono quelli di Bright (1998) e Buchner (2008) i cui risultati, comunque, non sono interpretabili per una corretta parametrizzazione del parametro in questione, in quanto forniscono unicamente delle misure relative di quanto il moscardino possa muoversi in matrice e non il numero di individui che da una popolazione passa ad un'altra. In questa ricerca, quindi, di fronte l'impossibilità di avere una stima del parametro a della funzione dispersal-distance si è utilizzato

un valore realistico, per cui una proporzione molto bassa di individui abbandoni il patch (a = 0,01; Mortelliti *comm. pers.*). D'altronde molti autori implementano il parametro a della funzione dispersal-distance sulla base di opinioni di esperti (Root 1998; Yamada *et al.* 2004; Wintle *et al.* 2005) e risultano pochi gli studi in cui vengono utilizzati dati di radio-tracking per la stima di questo parametro (Lopez 2004; Haines *et al.* 2006). Si è comunque condotta un'analisi di sensitività per valutare quanto la variazione del 10% di questo parametro influisse sui risultati del modello. Dai risultati dell'analisi si è visto che il modello è sensibile alla proporzione di individui che va in dispersione da una popolazione ad un'altra (scarto medio delle abbondanze finali = 335 individui; scarto medio del numero di popolazioni presenti alla fine delle simulazioni = 35,7 popolazioni). E' altresì vero, a mio avviso, che la sensibilità del parametro non influenzi i risultati relativi ai processi indagati di questa ricerca: pur variando le stime assolute, il rapporto relativo tra le stime rimane invariato, e quindi anche l'interpretazione dei risultati.

Per una corretta parametrizzazione dei modelli di popolazione spazialmente espliciti, risulta quindi una priorità avere delle prove empiriche di quanti individui di moscardino passino da una popolazione ad un altra. A mio avviso, d'altronde, tramite tecniche di radio-tracking, risulta poco probabile registrare il movimento di un moscardino da un patch ad un altro, a causa della durata limitata dei radiocollari. Pertanto, il modo migliore per avere una stima accurata delle proporzioni di individui di moscardino che va in dispersione da una popolazione ad un'altra, è quello di utilizzare i risultati delle analisi genetiche sui loci microsatellite degli individui per la stima dei tassi di emigrazione delle popolazioni (Lethbridge *et al.* 2001).

Un fenomeno riscontrato nella modellizzazione della dispersione nei SEPM è quello in cui incrementando il tasso di dispersione si diminuisce la vitalità complessiva delle popolazioni spazialmente strutturate quando esse presentano dinamiche di tipo source-sink (Akcakaya & Raphael 1998). Nello specifico, questo accade quando si ha un tipo di dispersione simmetrica (stesso tasso di dispersione in entrambe le direzioni) tra una popolazione molto grande ed una molto piccola. Infatti, il numero di dispersori che dalla popolazione grande arriva alla popolazione piccola risulta molto più grande del numero di dispersori nell'altra direzione. Il piccolo numero di dispersori che dalla popolazione piccola raggiunge quella grande, pertanto, non viene compensato dal numero di individui che lascia la popolazione grande. Inoltre il grande numero di dispersori che arriva alla popolazione piccola fa superare rapidamente la carrying capacity della popolazione, non contribuendo più alla vitalità complessiva della popolazione spazialmente strutturata (Akcakaya & Baur 1996). Il tasso di dispersione può non essere simmetrico tra una popolazione molto grande ed una molto piccola in natura, in quanto: 1) i dispersori dal patch grande al patch piccolo hanno una maggior probabilità di "mancare" il patch target e disperdersi in altre direzioni; 2) una grande porzione del patch grande risulta essere un po' più lontana rispetto a quanto non lo sia il patch piccolo, invece, tutto il patch piccolo si trova all'incirca alla stessa distanza dal bordo di quello grande (Akcakaya & Raphael 1998). Una dispersione non simmetrica può essere simulata solo con un modello individual-based.

Poiché in questa ricerca è stato utilizzato un modello population-based si è ovviato al problema modellizzando i fattori densità-dipendenti per la dispersione. E' stato documentato per molte specie, infatti, che il tasso di dispersione sia maggiore quando la popolazione si trovi in condizioni di sovraffollamento (Lindenmayer *et al.* 2001; Yamada *et al.* 2004; Haines *et al.* 2006; Akcakaya 2002). Si è quindi deciso di implementare nei SEPM il parametro source population size (slope), che definisce la probabilità di dispersione come una funzione lineare della carrying capacity delle popolazioni. Questo assunto si basa sul principio che il tasso di dispersione dovrebbe riflettere la tendenza degli individui ad esplorare l'habitat, quando le dimensioni della popolazione sono vicine alla carrying capacity. Questo parametro, per gli stessi motivi del parametro a della funzione dispersal-distance, si è basato su opinione di esperti (Mortelliti, *comm. pers.*). Tuttavia dai risultati

delle analisi di sensitività, il modello non risulta sensibile alle variazioni del \pm 10% di questo parametro (scarto medio delle abbondanze finali = 85 individui; scarto medio del numero di popolazioni presenti alla fine delle simulazioni = 4,4 popolazioni).

Future analisi potranno applicare il metodo proposto da Akcakaya & Raphael (1998) per superare il problema, discusso in precedenza, sulla riduzione della vitalità delle popolazioni quando si aumenta il tasso di dispersione. Il metodo prevede la moltiplicazione del tasso di dispersione di ogni patch con la proporzione tra la carrying capacity della popolazione grande e quella della popolazione piccola.

5.3 Interpretazione dei risultati dei modelli

La stima dei parametri demografici delle popolazioni campionate e la simulazione, attraverso i SEPM, dei processi di perdita di habitat e frammentazione *per se*, hanno permesso di valutare gli impatti relativi dei due processi sulla vitalità delle popolazioni spazialmente strutturate. Il risultato principale ottenuto in questa ricerca è stato che il processo di frammentazione *per se* ha provocato un impatto maggiore sulla vitalità delle popolazioni, rispetto a quello di perdita di habitat.

Dai risultati dei modelli è emerso che due fattori hanno determinato questa differenza. Il primo è dovuto al fatto che il processo di frammentazione *per se* ha ridotto in misura maggiore le dimensioni medie dei patch, determinando quindi dimensioni minori delle popolazioni; il secondo fattore è legato ad un maggior isolamento dei frammenti negli scenari di frammentazione, che ha portato ad una dispersione limitata tra le diverse popolazioni. In definitiva quindi, è stata la combinazione di questi due fattori a determinare un maggior tasso di estinzione delle popolazioni locali negli scenari di frammentazione.

Gli studi pregressi sul moscardino, condotti nelle medesime aree di studio, in cui sono stati utilizzati dati di presenza/assenza della specie per fare inferenza sui due processi (Mortelliti *et al.* 2011), risultano in disaccordo con i risultati raggiunti in questa ricerca. Infatti è stato dimostrato da Mortelliti *et al.* (2011) che la maggior minaccia per il moscardino in paesaggi frammentati dell'Italia centrale è rappresentata dalla perdita di habitat, mentre il ruolo della frammentazione *per se* è risultato essere molto minore. Sebbene gli studi di distribuzione presentino un alto valore predittivo, questi non permettono di spiegare le cause di estinzione delle popolazioni nei paesaggi frammentai (Mortelliti & Boitani *submitted*) e possono mascherare dei processi critici, i cui effetti possono essere evidenziati solo con studi condotti a livello di popolazione (Holland & Bennett 2010). E' stato possibile raggiungere i risultati di questa ricerca solo grazie ad un ampio studio che prendesse in considerazione non solo dati di distribuzione delle popolazioni di moscardino, ma anche parametri demografici per fare inferenze sui processi. Le differenze tra i risultati di questa ricerca e quelli di Mortelliti *et al.* (2011), pur tuttavia, potrebbero essere attenuate a causa del fatto che in questa ricerca non abbiamo considerato la connettività strutturale del paesaggio, che sarà invece oggetto di future indagini mediante i SEPM.

Dai risultati di questo lavoro ipotizzo che, le popolazioni di moscardino da noi studiate, siano popolazioni di tipo source-sink e/o popolazioni isolate, piuttosto che presentare dinamiche a metapopolazione classica e/o di tipo patchy. Infatti il pattern di riduzione dell'habitat adottato per simulare il processo di frammentazione *per se*, ha una maggior possibilità di togliere (o ridurre) i patch più grandi che contengono popolazioni source, in un tipo di dinamica source-sink. E' questo il motivo principale per cui le vitalità complessive delle popolazioni spazialmente strutturate sono diminuite maggiormente negli scenari di frammentazione *per se*. Diversamente, se le popolazioni

oggetto di indagine fossero state metapopolazioni classiche, e/o popolazioni patchy, le possibilità di togliere popolazioni grandi o popolazioni piccole sarebbero state uguali, e non ci sarebbe stata questa differenza nelle traiettorie e nelle occupancy delle popolazioni, causata dai due processi. Piuttosto, il processo di perdita di habitat avrebbe dovuto determinare un impatto maggiore sulla vitalità delle metapopolazioni classiche e/o popolazioni patchy, come suggeriscono gli studi pregressi sul moscardino (Mortelliti *et al.* 2011).

Altro motivo per cui si ipotizzano dinamiche di tipo source-sink è rappresentato dalla relazione diretta riscontrata tra la probabilità di presenza nei patch e le abbondanze delle popolazioni che li occupano. Inoltre, durante il periodo di campionamento, alcune popolazioni risultavano essere molto più grandi e altre molto più piccole e si sono riscontrati tassi di accrescimento delle popolazioni a volte positivi e a volte negativi. Sono state invece escluse delle popolazioni patchy anche perché le popolazioni di moscardino occupavano una minima parte dei patch campionati potenzialmente idonei.

Tuttavia, per confermare queste ipotesi, si dovrebbero fornire evidenze empiriche che dimostrassero tassi di crescita netti diversi delle varie popolazioni locali, e che ci sia dispersione tra di esse.

Risulta importante ribadire che in natura non esistono distinzioni nette tra queste categorie di popolazione spazialmente strutturate, ed ognuna può essere parzialmente rappresentata, anche in uno stesso paesaggio (Hanski & Gaggiotti 2004).

La differenza, tra l'impatto del processo di frammentazione *per se* e quello di perdita di habitat sulla vitalità delle popolazioni, è risultata essere più marcata nei paesaggi di Viterbo e della Sabina, rispetto il paesaggio del Lamone. I tre paesaggi, come abbiamo visto, differiscono principalmente per la quantità di habitat residuo. Infatti, mentre l'ammontare di habitat residuo nel paesaggio del Lamone è maggiore del 30%, quello nei paesaggi di Viterbo e della Sabina risulta minore del 20%. Ciò fa supporre che l'impatto dei diversi processi di perdita di habitat e frammentazione *per se* sia legato alla quantità di habitat residuo nei paesaggi.

Questo concetto era già stato ipotizzato da Andrén, sia attraverso una review di studi su specie di uccelli e mammiferi in paesaggi con diverse proporzioni di habitat idoneo (Andrén 1994), sia attraverso l'applicazione di modelli di popolazione (Andrén 1996). Nei suoi lavori si dimostra che l'impatto sulle dimensioni delle popolazioni delle specie studiate sia dovuto principalmente al processo di perdita di habitat, in paesaggi che presentano grandi proporzioni di habitat residuo. Quando le proporzioni di habitat diminuiscono nei paesaggi, gli effetti del processo di frammentazione (dimensioni ed isolamento dei patch) influenzano maggiormente le dimensioni delle popolazioni. Le conclusioni dei suoi lavori, pertanto, mettono in evidenza come le diverse quantità di habitat residuo nei paesaggi siano determinanti nel condizionare quali dei due processi provochi un maggior impatto sulle popolazioni (Andrén & Delin 1994; Andrén 1994, 1996, 1997b). Trovare quindi delle soglie di quantità di habitat residuo nei paesaggi, per differenziare l'intensità dell'impatto relativo provocato dai due processi, risulta molto importante per la conservazione (Andrén 1997b). In genere queste soglie variano a seconda delle specie e dei paesaggi studiati (Andrén 1996), ma nel lavoro di Andrén (1994) si identifica una soglia "media" proprio del 30%, in accordo quindi con quanto emerso dai risultati del presente lavoro.

5.4 Implicazioni per la conservazione

I risultati ottenuti in questa ricerca possono fornire delle indicazioni gestionali su quanto habitat possa essere ulteriormente sottratto dai paesaggi per sostenere delle popolazioni di moscardino ancora vitali e le modalità di taglio, in termini di aggregazione spaziale della superficie boschiva.

Dal punto di vista della conservazione della specie risulta molto importante trovare potenziali soglie di ammontare di habitat residuo nei paesaggi, al di sotto delle quali le popolazioni potrebbero declinare fino ad arrivare inevitabilmente all'estinzione. Al contrario, mantenendo una soglia elevata, si hanno ancora possibilità di sostenere delle popolazioni vitali a lungo termine (Andrén 1997b).

I risultati degli scenari di cambiamento dell'habitat nei paesaggi di Viterbo e della Sabina suggeriscono che, qualora sia necessario operare dei tagli sulle superfici boschive (per il cambio di destinazione di uso del suolo), queste non dovrebbero mai scendere al di sotto del 10% se si vogliono sostenere delle popolazioni ancora vitali di moscardino a breve termine (50 anni). Questa soglia dimensionale deriva dal fatto che, negli scenari in cui si è ridotto del 50% l'habitat residuo, la vitalità delle popolazioni nei due paesaggi è diminuita drasticamente.

Il confronto dei diversi impatti dei processi di perdita di habitat e frammentazione *per se* sulla vitalità delle popolazioni, suggerisce che i tagli dovrebbero essere tutti circoscritti entro un raggio di 4.000 m. Questa rappresenta la distanza minima assegnata alla distribuzione dei punti random per simulare il processo di perdita di habitat, risultato in definitiva meno peggiorativo per le popolazioni. Inoltre, se venissero confermate le ipotesi fatte circa il tipo di dinamica che caratterizza le popolazioni spazialmente strutturate, questi tagli dovrebbero essere fatti solo sui frammenti boschivi che contengono popolazioni sink o popolazioni isolate.

In aggiunta a quanto detto, sotto determinate soglie di ammontare di habitat residuo in un paesaggio, le popolazioni possono declinare molto velocemente a causa degli effetti della frammentazione, che si aggiungono a quelli di perdita di habitat (Andrén 1997b). In questa ricerca la soglia è risultata corrispondere al 30% di habitat idoneo, in accordo con gli studi condotti da Andrén (1994, 1996, 1997b; Andrén & Delin 1994).

Risulta necessario sottolineare che le indicazioni gestionali fin qui fornite sono relative alle dimensioni dei paesaggi. Sebbene queste siano state in parte scelte in funzione degli obiettivi della ricerca, al variare delle dimensioni dei paesaggi è possibile riscontrare variazioni sensibili delle suddette indicazioni.

In questa ricerca un trend di declino delle popolazioni di moscardino nei paesaggi frammentati dell'Italia centrale, è stato evidenziato anche negli scenari di non cambiamento dell'habitat. Come abbiamo osservato dai risultati dei modelli, questo trend è principalmente dovuto alle numerose estinzioni delle popolazioni che si verificano nei patch piccoli, soprattutto in condizioni di isolamento da popolazioni source.

Segue che arrestare i processi di perdita e frammentazione dell'habitat non basta per sostenere delle popolazioni vitali di moscardino. Di conseguenza risulta prioritario adottare delle strategie di conservazione, quali l'aumento della quantità totale di habitat in un paesaggio (habitat restoration; Lindenmayer & Fischer 2006) e l'incremento e manutenzione delle siepi (Bright & MacPherson 2002; Bright *et al.* 2006). L'incremento e manutenzione delle siepi è la strategia di conservazione maggiormente adottata, ad esempio, nei programmi di conservazione inglesi per la specie (vedi in particolare il progetto Hedgerows for Dormouse; PTES 2009, 2011; Morris 2003). Nonostante questa strategia potrebbe risultare meno efficace rispetto all'habitat restoration, rappresenta quella economicamente più vantaggiosa e richiede meno tempo e personale specializzato. Inoltre, poiché il moscardino utilizza le siepi come aree di nidificazione e

foraggiamento (Bright 1998; Wolton 2009), queste aumentano di fatto la superficie di habitat idoneo disponibile per la specie.

Un'ulteriore strategia di conservazione in ambienti frammentati è rappresentata dalla gestione dell'habitat, rivolta ad aumentare la qualità dell'habitat per una particolare specie (Mortelliti *et al.* 2010). Infatti spesso, l'impossibilità di attuare le prime due strategie di conservazione precedentemente descritte, fa si che la gestione dell'habitat risulti quella che può fare la differenza nella conservazione delle specie in paesaggi frammentati.

6 CONCLUSIONI

Le strategie di conservazione adottate per mitigare gli impatti di perdita e frammentazione dell'habitat avvengono troppo lentamente rispetto gli attuali tassi di perdita di biodiversità (Lindenmayer & Fischer 2007). La maggior parte degli studi sulla frammentazione si sono focalizzati sulla distribuzione delle specie, utilizzando unicamente dati di presenza/assenza per fare inferenza sui due processi. Sebbene questi studi presentino un alto valore predittivo, non permettono di spiegare le cause di estinzione delle popolazioni nei paesaggi frammentati (Mortelliti & Boitani *submitted*) e possono mascherare dei processi critici, i cui effetti possono essere evidenziati solo con studi condotti a livello di popolazione.

I processi di perdita e frammentazione dell'habitat agiscono sui parametri demografici delle popolazioni influenzate dai due processi (Holland & Bennett 2010). Nel presente lavoro lo studio di campo è servito alla raccolta dei dati e alla stima dei parametri demografici utilizzati per la parametrizzazione dei modelli spazialmente espliciti di dinamica di popolazione. Questi sono stati gli strumenti che hanno permesso di analizzare la vitalità delle popolazioni spazialmente strutturate di moscardino in tre paesaggi frammentati dell'Italia centrale, in termini di abbondanza e tassi di occupancy delle popolazioni spazialmente strutturate e delle singole popolazioni locali.

Le numerose evidenze sperimentali che dimostrano la sensibilità del moscardino ai processi di perdita e frammentazione dell'habitat, a causa della forte specializzazione alla vita arboricola (Bright *et al.* 1994; Bright & Morris 1996; Mortelliti *et al.* 2011), e le tecniche di studio di campo utilizzate, che rendono relativamente facile il reperimento dei principali parametri demografici della specie (Bright *et al.* 2006; Morris 2003), sono stati i motivi principali della scelta del moscardino come specie modello per lo studio dei processi di perdita e frammentazione dell'habitat.

Attraverso il protocollo di analisi utilizzato si sono potuti valutare gli impatti causati dai due diversi processi sulla vitalità delle popolazioni di moscardino e fornire delle indicazioni gestionali sulle modalità di taglio delle superfici boschive per sostenere delle popolazioni vitali. Il risultato più rilevante emerso è che, in paesaggi caratterizzati da un alto grado di perdita e frammentazione dell'habitat, il processo di frammentazione *per se* provoca un impatto maggiore, rispetto quello di perdita di habitat, sulla vitalità delle popolazioni di moscardino. La simulazione del processo di frammentazione dell'habitat ha determinato una maggior riduzione delle dimensioni delle popolazioni e una minore dispersione di individui tra le popolazioni, a causa del maggior isolamento tra i patch. E' stata la combinazione di questi due fattori a determinare abbondanze di popolazione minori e tassi di estinzione maggiori delle popolazioni locali di moscardino negli scenari di frammentazione dell'habitat, rispetto quelli di perdita. Dall'impatto relativo causato dai due processi si è ipotizzato inoltre che, in aggiunta a popolazioni locali isolate, le popolazione di moscardino nei paesaggi indagati siano caratterizzate prevalentemente da dinamiche di tipo source-sink.

Le differenze tra l'impatto del processo di frammentazione e quello di perdita di habitat sono risultate più marcate nei paesaggi di Viterbo e della Sabina, rispetto quello del Lamone. Ciò fa supporre che le diverse quantità di habitat residuo nei paesaggi siano determinanti nel condizionare quali dei due processi provochi un maggior impatto sulle popolazioni e che al di sotto del 30% di habitat residuo gli effetti della frammentazione dell'habitat siano maggiori sulla vitalità delle popolazioni, in accordo con gli sudi condotti da Andrén (1994, 1996, 1997; Andrén & Delin 1994).

Da un punto di vista della conservazione risulta molto importante trovare potenziali soglie di ammontare di habitat residuo nei paesaggi, al di sotto delle quali si riducono drasticamente le vitalità delle popolazioni (Andrén 1997). Dai risultati dei modelli è emerso che non si dovrebbe mai scendere al di sotto del 10% di habitat idoneo per sostenere delle popolazioni ancora vitali di moscardino e, qualora sia necessario operare dei tagli sulle superfici boschive, questi dovrebbero essere distribuiti in maniera concentrata, entro raggi di 4.000 m. Bisognerebbero inoltre adottare delle strategie di conservazione, quali l'habitat restoration (Lindenmayer & Fischer 2006), l'incremento della connettività (Bright & MacPherson 2002; Morris 2003) e la gestione dell'habitat finalizzate ad aumentare la vitalità delle popolazioni.

Per aumentare l'accuratezza predittiva dei modelli di popolazione spazialmente espliciti, future ricerche dovrebbero utilizzare un numero di individui maggiore per le stime dei principali parametri demografici.

I meccanismi dispersivi giocano un ruolo importante nella persistenza e vitalità delle popolazioni spazialmente strutturate (Akcakaya *et al.* 1995; Root 2004; Lethbridge *et al.* 2010) e una caratteristica fondamentale dei modelli di popolazione spazialmente espliciti è che questi possono incorporare i movimenti dispersivi delle specie studiate. Tuttavia, una corretta parametrizzazione della dispersione, risulta particolarmente impegnativa in questi modelli in quanto si conoscono molto poco i meccanismi dispersivi delle specie (Dunning *et al.* 1995; Akcakaya 2002) e, nel caso specifico, i meccanismi di movimento del moscardino in matrice. Risulta una priorità, pertanto, avere delle prove empiriche di quanti individui si disperdano tra le popolazioni e future ricerche dovrebbero utilizzare i risultati delle analisi genetiche sui loci microsatellite degli individui per la stima dei tassi di emigrazione delle popolazioni (Lethbridge *et al.* 2010).

Inoltre, un problema osservato nell'implementazione dei modelli di popolazioni spazialmente espliciti riguarda la riduzione della vitalità delle popolazioni spazialmente strutturate quando si aumenta il tasso di dispersione in presenza di dinamiche di popolazioni source-sink (Akcakaya & Raphael 1998). Future analisi dovrebbero considerare le diverse carrying capacity delle popolazioni nel calcolo dei tassi di dispersione per superare questo problema. Infine, abbiamo visto che un metodo alternativo a quello proposto, per un'accurata stima della carrying capacity delle popolazioni nei modelli, risulta quello di considerare gli home range delle specie studiate (Akcakaya & Raphael 1998; Root 2004).

Sono necessari impegnativi e costosi studi di campo, condotti per periodi di tempo lunghi, per una stima accurata di tutti i parametri necessari per una corretta parametrizzazione dei modelli spazialmente espliciti di dinamica di popolazione (Dunning *et al.* 1995; Wiegand *et al.* 2004). D'altronde, noi crediamo che investire un notevole sforzo di campo per la parametrizzazione dei modelli spazialmente espliciti di dinamica di popolazione permetta da una parte di spiegare meglio i complessi processi di perdita e frammentazione dell'habitat e dall'altra di fornire, in tempi relativamente brevi, le strategie di conservazione ottimali delle specie minacciate.

BIBLIOGRAFIA

Aars J., Andreassen H.P. & Ims R. 1995. Root voles: litter sex ratio variation in fragmented habitat. *Journal of Animal Ecology* 64: 459-472.

A.A.V.V. Guide geologiche regionali. Lazio. 1990. A cura di: Società Geologica Italiana. BE-MA Editrice.

Akaike H. 1973. Information Theory as an Extension of the Maximum Likelihood Principle. Pages: 267-81. In: Second International Symposium on Information Theory, edited by Petrov B.N. & Csaki F. Budapest: Akademiai Kiado.

Akçakaya H.R., McCarthy M.A. & Pearce J.L. 1995. Linking landscape data with population viability analysis: management options for the helmeted honeyeater. *Lichenostomus melanops cassidix*. *Biological conservation* 73: 169-176.

Akçakaya H.R. 1996. Linking GIS with models of ecological risk assessment for endangered species.Third International Conference on Integrating GIS land Environmental Modeling. Santa Fe. NewMexico.Sitoweb:http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/akcakaya_resit/akcakaya.html.

Akçakaya H.R. & Baur R. 1996. Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. *Oecologia* 105: 475-483.

Akçakaya H.R. & Raphael M.G. 1998. Assessing human impact despite uncertainty: viability of the northern spotted owl metapopulation in the northwestern USA. *Biodiv. Conserv.* 7: 875-894.

Akçakaya H.R., Burgman M.A. & Ginzburg L.R. 1999. Applied population ecology: principles and computer exercises using RAMAS EcoLab 2.0. 2nd ed. Sinauer Associates, Sunderland, Mass.

Akçakaya H.R. 2000. Population viability analyses with demographically and spatially structured models. *Ecological Bulletins* 48: 23-38.

Akçakaya H.R. & Sjögren-Gulve P. 2000. Population viability analysis in conservation planning: an overview. *Ecological Bulletins* 48: 9-21.

Akçakaya H.R. 2002. RAMAS GIS: Linking Spatial Data with Population Viability Analysis. User Manual for Version 5.0. *Applied Biomathematics*. Setauket, N.Y. Sito web: <u>http://www.ramas.com</u>.

Akçakaya H.R. & Root W. 2002. RAMAS Metapop: viability analysis for stage-structured metapopulations (version 4.0). Applied Biomathematics. Setauket, N.Y.

Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). 2004. Species Conservation and Management. Case Studies. University Press. Oxford.

Amori G., Cantini M. & Rota V. 1994. Distribution and Conservation of Italian Dormouse. *Hystrix*. 6 (1-2): 331-336.

Amori G., Longino C. & Nappi A. 2008. Fauna d'Italia Vol. XLIV. Mammalia II. Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia. Edizioni Calderini de II Sole 24 ORE Business Media Srl, Milano. Pages: 378-404.

Andrén H. 1992. Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. *Ecology* 73: 794-804.

Andrén H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. *Oikos* 71: 355-366.

Andrén H. & Delin A. 1994. Habitat selection in the Eurasian red squirrel, *Sciurus vulgaris*, in relation to forest management. *Oikos* 70: 43-48.

Andrén H. 1996. Population response to habitat fragmentation: statistical power and the random sample hypothesis. *Oikos* 76: 235-242.

Andrén H. 1997a. Population response to landscape changes depends on specialization to different landscape elements. *Oikos* 80: 193-196.

Andrén H. 1997b. Habitat fragmentation and changes in biodiversity. *Ecological bulletins* 46: 171-181.

Anzalone B. 1986. Elenco preliminare delle piante vascolari spontanee del Lazio. Quaderno Lazionatura N° 5.

Arcà G. 1993. Aspetti faunistici del comprensorio della valle del Fiora e della Selva del Lamone. Pages: 271-280. In: Olmi M. & Zapparoli M. (eds). L'ambiente nella Tuscia Laziale. Aree protette e di interesse naturalistico della provincia di Viterbo. Università della Tuscia, Viterbo.

Atkinson W.D. & Shorrocks B. 1981. Competition on a divided and ephemeral resource: a simulation model. *Journal of Animal Ecology* 50: 461-471.

Baguette M. & Schtickzelle N. 2006. Negative relationship between dispersal distance and demography in butterfly metapopulations. *Ecology* 87: 648-654.

Bailey J.A. 1984. Principles of Wildlife Management. J. Wiley & Sons, N.Y.

Baragliu G.A., Biondi M., Pietrelli L., Meschini A. & Cannavicci A. 1993. Aspetti vegetazionali della Selva del Lamone e della Valle del Fiora. Viterbo Gruppo Ambiente Farnese. Pages: 263-269. In: L'Ambiente nella Tuscia laziale, a cura di Massimo Olmi e Marzio Zapparoli, Università degli Studi della Tuscia.

Barrowclough G.E. 1980. Gene flow, effective population size, and genetic variance in birds. *Evolution* 34: 789-798.

Bascompte J. & Solé R.V., 1996. Habitat fragmentation and extinction tresholds in spatially explicit models. *Journal of Animal Ecology*. 65: 465-473.

Bascompte J., Possingham H. & Roughgarden J. 2002. Patchy populations in stochastic environments: critical number of patches for persistence. *American Nauralist* 159: 128-37.

Behan R.W. 1990. Multiresource forest management: a parasigmatic challenge to professional forestry. *Journal of Forestry* 88: 12-18.

Beissinger S.R. & Westphal M.I. 1998. On the use of demographic models of population viability in endangered species management. *Journal of Wildlife Management* 62: 821–841.

Beissinger S.R. & McCullough D.R. (eds). 2002. Population viability analysis. University of Chicago Press, Chicago.

Bennett A.F. 1999. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. IUCN, Gland, Switzerland and Cambridge, UK.

Bennett A.F., Hinsley S.A., Bellamy P.E., Swetnam R.D. & Mac Nally R. 2004. Do regional gradients in land-use influence richness, composition and turnover of bird assemblages in small woods? *Biological Conservation* 119: 191-206.

Bennett A.F., Radford J.Q. & Haslem A. 2006. Properties of land mosaics: implications for nature conservation in agricultural environments. *Biological Conservation* 133: 250-264. Berg L. & Berg Å. 1999. Abundance and survival of the hazel dormouse *Muscardinus avellanarius* in

Bergin T.M., Best L.B., Freemark K.E. & Koehler K.J. 2000. Effects of landscape structure on nest predation in roadsides of a Midwestern agroecosystem: a multiscale analysis. *Landsc. Ecol.* 15: 131-43.

Berglind S-Å. 2000. Demography and management of relict sand lizard (*Lacerta agilis*) populations on the edge of extinction. *Ecological Bulletins* 48: 123-142.

Blasi C. 1994. Fitoclimatologia del Lazio. *Fitosociologia* 27: 151-157.

a tempory shrub habitat: a trapping study. Ann. Zool. Fennici 36: 159-165.

Blasi C., De Dominicis V., Chiarucci A., Gabellini A. & Morrocchi D. 2000. Unità ambientali e serie di vegetazione. Quadro Conoscitivo09 per il Piano Territoriale di Coordinamento della Provincia di Siena (PTC). Sito web: <u>http://ptc.provincia.siena.it/files_html/progetti/homeqcdocs.html</u>

Bolger D.T., Alberts A.C., Sauvajot R.M., Potenza P., McCalvin C., Tran D., Mazzoni S. & Soulé M.E. 1997. Response of rodents to habitat fragmentation in coastal southern California. *Ecol. Appl.* 71: 1075-1084.

Bondrup-Nielsen S. 1983. Density estimation as a fuction of live-trapping grid and home range size. *Canadian Journal of Zoology* 61: 2361-2365.

Boyce M.S. 1992. Population viability analysis. Annu. Rev. Ecol. Syst. 23: 481–506

Bright P.W. & Morris P.A. 1990. Habitat requirements of the dormice *Muscardinus avellanarius*, in relation to woodland management in Southwest England. *Biological Conservation* 54: 307-326.

Bright P.W. & Morris P.A. 1991. Ranging and nesting behaviour of the dormouse, *Muscardinus avellanarius*, in diverse low-growing woodland. *J. Zool. Lond.* 224: 177-190.

Bright P.W. & Morris P.A. 1992. Ranging and nesting behaviour of the dormouse *Muscardinus avellanarius* in coppice-with-standards woodland. *J. Zool. Lond.* 226: 589-600.

Bright P.W. & Morris P.A. 1993. Foraging behaviour of dormice *Muscardinus avellanarius* in two contrasting habitats. *J. Zool. Lond.* 230: 69-85.

Bright P.W., Mitchell P. & Morris P.A. 1994. Dormouse distribution: survey techniques, insular ecology and selection of sites for conservation. *Journal of Applied Ecology* 31: 329-339.

Bright P.W. & Morris P.A. 1996. Why dormice are rare? A case study in conservation biology. *Mammal Review* 26: 157-187.

Bright P.W. 1998. Behavoiur of specialist species in habitat corridors: arboreal dormice avoid corridor gaps. *Animal behaviour* 56: 1485-1490.

Bright P.W. & MacPherson D. 2002. Hedgerow management, dormice and biodiversity. *English Nature Research*. Reports No 454.

Bright P.W., Morris P.A. & Mitchell-Jones T. 2006. The dormouse conservation handbook - Second edition. *English Nature*. Peterborough.

Brook B.W., Lim L., Harden R. & Frankham R. 1997. Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island woodhen *Tricholimnas sylvestris* (Sclater). *Biol. Conserv.* 82: 119–128.

Brook B.W., O'Grady J.J., Chapman A.P., Burgman M.A., Akçakaya H.R. & Frankham R. 2000. Predictive accuracy of population viability analysis in conservation biology. *Nature* 404: 385–387.

Buchner S. 2008. Dispersal of common dormice *Muscardinus avellanarius* in a habitat mosaic. *Acta Theriologica* 53: 259-262.

Bunnell F. 1999. Foreword. Let's kill a pancherston: giving fragmentation a meaning. Pages: 7-13. In: Rochelle J., Lehmann L.A. & Wisniewski J. Forest Wildlife and Fragmentation: Management Implications. Brill, Leiden, Germany.

Burgman M.A., Ferson S. & Akçakaya H.R. 1993. Risk assessment in conservation biology. Chapman & Hall. New York.

Burnham K.P. & Anderson D.R. 2002. Model selection and multimodel inference. Springer, New York, USA.

Burson S.L. 1990. Population genetics and gene flow of the Common Tern. *Condor* 92:182-192.

Cantrell R.S. & C. Cosner C. 1993. Should a park be an island? *SIAM Journal on Applied Mathematics* 53: 219-252.

Capelli G. & Mazza R. 2003. Geologia, geomorfologia e idrogeologia del territorio di Anzio e Nettuno, in Atlante storico-ambientale Anzio Nettuno. Università Roma Tre. Croma. Provincia di Roma. De Luca Editori D'Arte.

Capizzi D. 1997. Effects of phylogenesis, morphology and habitat preferences on predatory exposure in a mediterranean small mammal community. *Ital. J. Zool.* 64: 61-67.

Capizzi D. & Luiselli L. 1998. A comparative study of the variability of owl diets in three localities of central Italy. *Revue d'Ecologie (Terre et vie)* 53: 367-385.

Capizzi D. 2000. Diet shifts of the Tawny owl *Strix aluco* in Central and Northern Italy. *It. J. Zool.* 67: 73-79.

Capizzi D., Battistini M. & Amori G. 2002. Analysis of the Hazel dormouse, *Muscardinus avellanarius*, distribuition in a Mediterranean fragmented woodland. *Italian Journal of Zoology*, 69: 25-31.

Capizzi D. & Santini L. 2007. I Roditori Italiani. Antonio Delfino Editore, Roma.

Caputo C., Ciccacci S., D'Alessandro L., Davoli L., Fredi P., La Monica G.B., Lupia Palmieri E., Puglese F. & Raffi R. 1986. Indagini climatiche, geomorfologiche e sedimentologiche: Progetto "Lago Albano".

Carlson A. & Hartman G. 2001. Tropical forest fragmentation and nest predation - an experimental study in an Eastern Arc montane forest, Tanzania. *Biodiversity and Conservation* 10: 1077-1085.

Carroll J.E. & Lamberson R.H. 1993. The owl's odyssey: a continuous model for the dispersal of territorial species. *SIAM Journal on Applied Mathematics* 53: 205-218.

Catzeflis F. 1984. Etude d'une population de Muscardins (*Muscardinus avellanarius*) lors du repos journalier (Mammalia, Gliridae). *Revue Suisse de Zoologie* 91: 851-860.

Catzeflis F. 1995. *Muscardinus avellanarius* L., 1758. Pages: 258-262. In: J. Hausser (ed.). Säugetiere der Schweiz. Verbreitung. Biologie. Ökologie. Birkhäuser Verlag, Basel.

Chalfoun A.D., Thompson III F.R. & Ratnaswamy M.J. 2002. Nest predators and fragmentation: a review and meta-analysis. *Conservation Biology* 16: 306-318.

Chesser R. 1991a. Gene diversity and female philopatry. *Genetics* 127: 437-447.

Chesser R. 1991b. Influence of gene flow and breeding tactics on gene diversity within populations. *Genetics* 129: 573-583.

Chesson PL. 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. *Theoretical Population Biology* 28: 263-287.

Conroy M.J. 1993. Testing hypotheses about the relationship of habitat to animal survivorship. Pages: 331-342. In: Lebreton J.D. & North P.M. (eds). The use of marked individuals in the study of bird population dynamics. Birkhauser-Verlag, Basel, Switzerland.

Conroy M.J., Cohen Y., James F.C., Matsinos Y.G. & Maurer B.A. 1995. Parameter estimation, reliability, and model improvement for spatially explicit models of animal populations. *Ecological Applications* 5: 17-19.

Constanza R. (eds). 1991. Ecological economics: the science and management of sustainability. Columbia University Press, New York, USA.

Contoli L. 1988. La nicchia trofica di Allocco (*Strix aluco*) e Barbagianni (*Tyto alba*) in Italia: acquisizioni e problemi. *Naturalista sicil.*, S. IV, 12 (suppl.): 129-143.

Coulson T., Mace G.M., Hudson E. & Possingham H. 2001. The use and abuse of population viability analysis. *Trend in Ecology and Evolution* 16: 219-221.

Danielson B.J. 1991. Communities in a landscape: the influence of habitat heterogeneity on the interactions between species. *American Naturalist* 138: 1105-1120.

Davies K.F., Gascon C. & Margules C.R. 2001. Habitat fragmentaion: Consequences, Management and Future Research Priorities. Pages: 81-97. In: Soulé M.E. & Orians G.H. Conservation Biology: Research Priorities for the Next Decade. Eds. Island Press, Washington D.C., USA.

Davies Z.G. & Pullin A.S. 2007. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. *Landscape Ecology* 22: 333-351.

Delcourt H.R. & Delcourt F.A. 1988. Quaternary landscape ecology: relevant scales in space and time. *Landscape Ecology* 2: 23-44.

Delin A.E. & Andrén H., 1999. Effects of habitat fragmentation on Eurasian red squirrel (*Sciurus vulgaris*) in a forest landscape. *Landscape Ecology* 14: 67-72.

den Boer P.J. 1981. On the survival of populations in a heterogeneous and variable environment. *Oecologia* 50: 39-53.

Didham R.K., Ghazoul J., Stork N.E. & Davis A.J. 1996. Insects in fragmented forests: a functional approach. *Trends in Ecology and Evolution* 11: 255-260.

Doak D.F. & Mills L.S. 1994. A useful role for theory in conservation. *Ecology* 75: 615–626.

Donovan T.M. & Flather C.H. 2002. Relationships among North American songbird trends, habitat fragmentation, and landscape occupancy. *Ecological Application* 12: 364-74.

Dunning J.B., Danielson B.J. & Pulliam H.R. 1992. Ecological processes that affect populations in complex landscapes. *Oikos* 65: 169-175.

Dunning J.B., Stewart D.J. Jr., Danielson B.J., Noon B.R., Root T.L., Lamberson R.H. & Stevens E.E. 1995. Spatially explicit population models: current forms and future uses. *Ecological Applications* 5: 3-11.

Eden S.M. & Eden R.M.G. 2001. The dormouse in Dorset: a reappraisal of dormouse ecology. *Dorset Natural History and Archaeological Society Proceedings* 123: 75-94.

Elkie P., Rempel R. & Carr A. 1999. Patch Analyst User's Manual. Northwest Science e Tecnology. ESRI © 1995-2011. 380 New York Street, Redlands, CA 92373-8100, USA. Sito web: <u>http://www.esri.com</u>.

Ellerman J.R. 1940. The families and genera of living rodents. Vol. 1. Rodents other than Muridae. Trustees of the British Museum (Natural History), London.

Elmhagen B. & Angerbjörn A. 2001. The applicability of metapopulation theory to large mammals. *Oikos* 94: 89-100. Doi: 10.1034/j.1600-0706.2001.11316.x.

Engen S. & Saether B.E. 2000. Predicting the time to quasi-extinction for populations far below their carrying capacity. *J. Theor. Biol.* 205: 649–658

Fahrig L. 1988. A general model of populations in patchy habitats. *Applied Mathematics and Computation* 27:53-66.

Fahrig L. & Paloheimo J. 1988. Effect of spatial arrangement of habitat patches on local population size. *Ecology* 69: 468-475.

Fahrig L. & Merriam G. 1994. Conservation of fragmented populations. *Conservation Biology* 8: 50-59.

Fahrig L. 1997. Relative effects of habitat loss and fragmentation on population extinction. *Journal of Wildlife Management* 61: 603-610.

Fahrig L. 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. *Ecological Applications* 12: 346-353.

Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. *Annual Review of Ecology, Evolution and Systematics* 34: 487-515.

Fazey I., Fischer J & Lindenmayer D.B. 2005. What do conservation biologists publish? *Biological Conservation* 124: 63-73.

Fieberg J. & Ellner S.P. 2000. When is it meaningful to estimate an extinction probability? *Ecology* 81: 2040–2047.

Filippucci M.G., Kotsakis T. 1995. Biochemical systematics and evolution of Myoxidae. In: M.G. Filippucci (eds.). Proceedings of II Conference on Dormice (Rodentia, Myoxidae). Fuscaldo (CS), 15-19 maggio 1993. *Hystrix* (n.s.), 6: 77-97 (1994).

Fischer J. & Lindenmayer D.B. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16, 265-280.

Foley J.A., Defries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T., Daily G.C., Gibbs H.K., Helwokswi J.H., Holloway T., Howard E.A., Kucharik C.J., Monfreda C., Patz J.A., Prentice I.C., Ramankutty N. & Snyder P.K. 2005. Global consequences of land use. *Science* 309: 570-574.

Forman, R.T.T. 2009. Land mosaics: the ecology of landscapes and regions. Cambridge University Press.

Forster M.R. 2000. Key Concepts in Model Selection: Performance and Generalizability. *Journal of Mathematical Psychology* 44:205-31.

Franken R.J. & Hik D.S. 2004. Influence of habitat quality, patch size and connectivity on colonization and extinction dynamics of collared pikas *Ochotona collaris*. *J Anim Ecol* 73: 889-896.

Franklin J.F. & Lindenmayer D.B. 2009. Importance of matrix habitats in maintaining biological diversity. *Proc. Natl. Acad. Sci. USA*. 106: 349-350.

Gaisler J., Holas V. & Homolka M. 1977. Ecology and reproduction of Gliridae (Mammalia) in northern Moravia. *Folia Zool.* 26: 213-228.

Gerber L.R. 2004. Steller Sea Lions (*Eumetopias jubatus*) in the Pacific Rim. Biological Uncertainty and Extinction Risk. Pages: 483-490. In: Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). Species Conservation and Management. Case Studies. University Press. Oxford.

Gehring T.M. & Swihart R.K. 2003. Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. *Biological Conservation* 109, 283-295.

Gibbons J.W., Scott D.E., Ryan T.J., Buhlmann K.A., Tuberville T.D., Metts B.S., Greene J.L., Mills T., Leiden Y., Poppy S. & Winne C.T. 2000. The global decline of reptiles, déjà vu amphibians. *Bioscience* 50: 653-666.

Gibbs J.P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient. *Landscape Ecology* 13: 236-238.

Gibbs J.P. 2001. Demography versus habitat fragmentation as determinants of genetic variation in wild populations. *Biological Conservation* 100: 15-20.

Gibbs J.P. & Stanton E.J. 2001. Habitat fragmentation and arthropod community change: carrion beetles, phoretic mites, and flies. *Ecological Applications* 11: 79-85.

Ginzburg L.R., Ferson S. & Akçakaya H.R. 1990. Reconstructibility of density dependence and the conservative assessment of extinction risks. *Conservation Biology* 4: 63-70.

Gotelli N.J. & Ellison A.M. 2004. A primer of ecological stastitics. Sinauer Associotes, Inc. Publishers. Sunderland, Massachusetts, USA.

Greppi C. & Pardi F. 2000. Forme e caratteri dei paesaggi senesi. Quadro Conoscitivo11 per il Piano Territoriale di Coordinamento della Provincia di Siena (PTC). Sito web: <u>http://ptc.provincia.siena.it/files html/progetti/homeqcdocs.html</u>.

Griffin P.C. & Mills L.S. 2003. Snowshoe hare population dynamics in fragmented forests of the Rocky Mountains. Unpublished ms.

Griffin P.C. & Mills L.S. 2004. Snowshoe Hares (*Lepus americanus*) in the Western United States. Movement in a Dynamic Managed Landscape. Pages: 439-448. In: Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). Species Conservation and Management. Case Studies. University Press. Oxford.

Grimm V., Frank K., Jeltsch F., Brandl R., Uchmanski J. & Wissel C. 1996. Pattern-oriented modelling in population ecology. *The Science of the Total Environment* 183: 151–166.

Gurd D.B., Nudds T.D. & Rivard D.H. 2001. Conservation of mammals in Eastern North American wildlife reserves: How small is too small? *Conservation Biology* 15: 1355-63.

Gustafson E.J. & Parker G.R. 1994. Using an index of habitat patch proximity for landscape design. *Landscape and Urban Planning* 29: 117-130.

Hall L.S., Krausman P.R. & Morrison M.L. 1997. The habitat concept and a plea for standard terminology. *Wildlife Society Bulletin* 25: 173-182.

Haila Y. 2002. A conceptual genealogy of fragmentation research: From island biogeography to landscape ecology. *Ecol. Appl.* 12: 321-334.

Haines A.M., Tewes M.E., Laack L.L., Horne J.S. & Young J.H. 2006. A habitat based population viability analysis for ocelots (*Leopardus pardalis*) in the United States. *Biological conservation* 132: 424-436.

Hanski I. & Gilpin M. 1991. Metapopulation dynamics. Pages: 3-16. In: Gilpin M., Hanski I., Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, London, UK.

Hanski I., Moilanen A. & Gyllenberg M. 1996. Minimum viable metapopulation size. *The American Naturalist* 147: 527-41.

Hanski I. 1997. Habitat destruction and metapopulation dynamics. Pages: 217-227. In: Pickett S.T.A., Ostfeld R.S., Shachak M. & Likens G.E. (eds). Enhancing the ecological basis of conservation: heterogeneity, ecosystem function and biodiversity. Chapman & Hall, New York.

Hanski I. 1998. Metapopulation dynamics. *Nature* 396: 41-49.

Hanki I. 1999. Metapopulation ecology. Oxford University Press, Oxford.

Hanski I. & Gaggiotti O. 2004. Ecology, genetics, and evolution of metapopulations. Elsevier.

Hargis C.D., Bissonette J.A. & Turner D.L. 1999. The influence of forest fragmentation and landscape pattern on American martens. *Journal of Applied Ecology* 36: 157-72.

Harrison S. 1991. Local extinction in a metapopulation context: an empirical evaluation. *Biological Journal of the Linnean Society* 42: 73-88.

Hartley M.J. & Hunter M.L. 1998. A meta-analysis of forest cover, edge effects, and artificial nest predation rates. *Conservation Biology* 12: 465-69.

Hartway C., Ruckelshaus M. & Kareiva P. 1998. The challenge of applying spatially explicit models to a world of sparse and messy data. Pages: 215-223. In: Bascompte J. & Solé R.V. (eds). Modeling Spatiotemporal Dynamics in Ecology. Springer-Verlag and Landes Bioscience, Berlin, Germany.

Hassell M.P., Comins H.N. & May R.M. 1991. Spatial structure and chaos in insect population dynamics. *Nature* 353: 255-258.

Hastings A. 1977. Spatial heterogeneity and the stability of predator-prey systems. *Theoretical Population Biology* 12: 37-48.

Henle K., Davies K.F., Kleyer M., Margules C. & Settele J. 2004. Predictors of species sensitivity to fragmentation. *Biodiversity and Conservation* 13: 207-251.

Higgins S.I., Richardson D.M. & Cowling R.M. 2000. Using a dynamic landscape model for planning the management of alien plant invasions. *Ecological Applications* 10: 1833–1848.

Hinsley S.A. 2000. The costs of multiple patch use by birds. *Landscape Ecology* 15: 765-775.

Hobbs R.J. & Yates C.J. 2003. Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. *Australian Journal of Botany* 51: 471-488.

Holland G.J. & Bennett A.F. 2010. Habitat fragmentation disrupts the demography of a widespread native mammal. *Ecography* 33: 841-853.

Hornbeck J.W. & Swank W.T. 1992. Watershed ecosystem analysis as a basis for multiple-use management of eastern forests. *Ecological Applications* 2: 238-247.

Huffaker CB. 1958. Experimental studies on predation: dispersion factors and predatorprey oscillations. *Hilgardia* 27: 343–83.

Jenness J. 2003. Identify Features Within Distance (id_within_dist.avx) extension for ArcView 3.x, v. 3.8a. Jenness Enterprises. Sito web: <u>http://www.jennessent.com/arcview/within_distance.htm</u>.
Johnson A.R., Milne B.T. & Wiens J.A. 1992. Diffusion in fractal landscapes: simulations and experimental studies of tenebrionid beetle movements. *Ecology* 73: 1968-1983.

Jorgensen S.E. 1986. Fundamentals of ecological modelling. Elsevier, Amsterdam, The Netherlands.

Juškaitis R. 1997. Ranging and movement of the common dormouse *Muscardinus avellanarius* in Lithuania. *Acta Theriologica* 42: 113–122.

Juškaitis R. 2003a. Abundance dynamics and reproduction success in the common dormouse, *Muscardinus avellanarius*, populations in Lithuania. *Folia Zool.* 52: 239-248.

Juškaitis R. 2003b. Breeding by young-of-the-year females in common dormouse, *Muscardinus avellanrius*, populations in Lithuania. *Ann. Zool. Fennici* 40: 529-535.

Juškaitis R. 2007a. Feeding by the common dormouse (*Muscardinus avellanarius*): a review. *Acta Zoologica Lituanica* 17 (2): 151-159.

Juškaitis R. 2007b. Peculiarities of habitats of the common dormouse, *Muscardinus avellanarius*, within its distributional range and in Lithuania: a review. *Folia Zoologica* 56: 337-348.

Juškaitis R. 2008. The common dormouse *Muscardinus avellanarius*: ecology, population structure and dynamics. Institute of Ecology of Vilnius University Publishers, Vilnius.

Kareiva P. 1989. Renewing the dialogue between theory and experiments in population ecology. Pages: 68-88. In: Roughgarden J., May R.M. & Levin S.A. (eds). Perspectives in ecological theory. Princeton University Press, Princeton, New Jersey, USA

Kareiva P., Skelly D. & Ruckelshaus M. 1997. Reevaluating the use of models to predict the consequences of habitat loss and fragmentation. Pages: 156-166. In: Pickett S.T.A., Ostfeld R.S., Shachak H. & Likens G.E. (eds). The Ecological Basis for Conservation. Chapman & Hall, New York.

Komonen A., Penttilae R., Lindgren M. & Hanski I. 2000. Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. *Oikos* 90: 119-26.

Koper N., Schmiegelow F.K.A. & Merrill E.H. 2007. Residuals cannot distinguish between ecological effects of habitat amount and fragmentation: implications for the debate. *Landscape Ecology* 22: 811-820.

Kratochvil J. 1973. Männliche Sexualorgane und System der Gliridae (Rodentia). Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae Brno 7: 1-52.

Krausman P.R. 1997. The influence of landscape scale on the management of desert Bighorn sheep. Pages: 349-367. In: Bissonette J.A. (eds). Wildlife and Landscape Ecology. Effects of pattern and scale. New York: Springer-Verlag.

Krebs C. J. 1999. Ecological Methodology 2nd Edition. Addison-Welsey Educational Publishers, Inc.

Kremsater L. & Bunnell F.L. 1999. Edge effects: theory, evidence and implications to management of western North American forests. Pages: 117-153. In: Rochelle J.A., Lehmann L.A. & Wisniewski J. Forest Fragmentation: Wildlife and Management Implications. Boston, MA: Brill.

Kurki S., Nikula A., Helle P. & Linden H. 2000. Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. *Ecology* 81: 1985-97

Lacy R.C. 1993. Vortex: a computer simulation model for population viability analysis. *Wildl. Res.* 20: 45–65

Lamberson R.H., McKelvey R., Noon B.R. & Voss C. 1992. A dynamic analysis of Northern Spotted Owl viability in a fragmented forest landscape. *Conservation Biology* 6: 505-512.

Lamberson R.H., Noon B.R., Voss C. & McKelvey K. 1994. Reserve design for terrestrial species: the effects of patch size and spacing on the viability of the Northern Spotted Owl. *Conservation Biology* 8: 185-195.

Lande R. 1987. Extinction thresholds in demographic models of terrestrial populations. *American Naturalist* 130: 624-635.

Laurance W.F. & Yensen E. 1991. Predicting the impacts of edge effects in fragmented habitat. *Biological Conservation* 55: 77-92.

Laurance W.F., Perez-Salicrup D., Delamonica P., Fearnside P.M., D'Angelo S., Jerozolinski A., Pohl L. & Lovejoy T.E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. *Ecology* 82: 105-116.

Laurance W.F., Nascimento H.E.M., Laurance S.G., Andrade A., Fearnside P.M., Ribeiro J.E.L.S., Chave J. & Muller-Landau H. 2006. Rain forest fragmentation and the proliferation of successional trees. *Ecology* 87: 469-482.

Law B.S. & Dickman C.R. 1998. The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management. *Biodiversity and Conservation* 7: 323-333.

Lethbridge M.R., Possingham H. & Tyre D. 2001. A spatially explicit population viability model using GIS: insight to dispersal. Pages: 819-824. In: F. Ghassemi, P. Whetton, R. Little and M. Littleboy, Integrating Models for Natural Resources Management Across Disciplines, Issues and Scales. *MODSIM2001: International Congress on Modelling and Simulation*, The Australian National University, Canberra.

Levin R. 1970. Extinction. Pages: 77-107. In: Some mathematical questions in biology. Lectures on mathematics in life sciences 2. Gerstenhaber M. (eds). American Mathematical Society. Providence, R.I.

Levin S.A. 1974. Dispersion and population interactions. *The American Naturalist* 108: 207-28.

Levin S.A. 1992. The problem of pattern and scale in ecology. *Ecology* 73: 1943-1967.

Likhachev G.N. 1966. Breeding of the common dormouse in the southern part of the Moscow region. *Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody, otdel Biologicheskii* 71: 32-42.

Lima S.L. & Zollner P.A. 1996. Towards a behavioral ecology of ecological landscapes. *TREE* 11: 131-135.

Lindenmayer D.B., Burgman M.A., Akçakaya H.R. & Lacy R.C. 1995. A Review of the generic computer-programs ALEX, RAMAS/space and VORTEX for modeling the viability of wildlife metapopulations. *Ecol. Model.* 82: 161–174.

Lindenmayer D.B. & Possingham H.P. 1996. Ranking conservation and timber management options for Leadbeater's Possum in southeastern Australia using Population Viability Analysis. *Conserv. Biol.* 10: 1-18.

Lindenmayer D.B., Ball I., Possingham H.P., McCarthy M.A. & Pope M.L. 2001. A landscape-scale test of the predictive ability of a spatially explicit model for population viability analysis. *Journal of applied ecology* 38: 36-48.

Lindenmayer D.B. & Fischer J. 2006. Habitat fragmentation and landscape change, an ecological and conservation synthesis. Island Press, Washington DC.

Lindenmayer D.B. & Fischer J. 2007. Tackling the habitat fragmentation panchreston. *Trends in Ecology and Evolution* 22: 127-132.

Liu J. 1992. ECOLECON: a spatially-explicit model for ecological economics of species conservation in complex forest landscapes. Dissertation, University of Georgia, Athens, Georgia, USA.

Liu J. 1993. ECOLECON: An ECOLogical-ECONomic model for species conservation in complex forest landscapes. *Ecological Modelling* 70: 63-87.

Liu J., Cubbage F.W. & Pulliam H.R. 1994. Ecological and economic effects of forest landscape structure and rotation length: simulation studies using ECOLECON. *Ecological Economics* 10: 249-263.

Liu J., Dunning J.B. Jr. & Pulliam H.R. 1995. Potential Effects of a Forest Management Plan on Bachman's Sparrows (*Aimophila aestivalis*): Linking a Spatially Explicit Model with GIS. *Conservation Biology* 9: 62-75.

Lloyd H. 2008. Influence of within-patch habitat quality on high Andean Polylepis bird abundance. *Ibis* 150: 735-745.

Lopez R.R. 2004. Florida Key Deer (*Odocoileus virginianus clavium*). Effect of Urban Development and Road Mortality. Pages: 451-459. In: Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). Species Conservation and Management. Case Studies. University Press. Oxford.

Lozan M.N. 1970. Gryzuny Moldavii (Rodents of Moldavia). Vol. 1. Kishinev: Redaktsionnoizdatel'skii otdel Akademii nauk Moldavskoi SSR. Ludwig D. 1999. Is it meaningful to estimate a probability of extinction? *Ecology* 80: 298–310.

Mahan C.G. & Yahner R.H. 1999. Effects of forest fragmentation on behaviour patterns in the eastern chipmunk (*Tamias striatus*). *Canadian Journal of Zoology* 77:1991-97.

McCarthy M.A. & Lindenmayer D.B. 1999. Incorporating metapopulation dynamics of Greater Gliders into reserve design in disturbed landscapes. *Ecology* 80: 651–667.

McCarthy M.A., Lindenmayer D.B. & Possingham H.P. 2000. Testing spatial PVA models of Australian treecreepers (Aves: Climacteridae) in fragmented forest. *Ecological Applications* 10: 1722–1731.

McCarthy M.A., Lindenmayer D.B. & Possingham H.P. 2001a. Assessing spatial PVA models of arboreal marsupials using significance tests and Bayesian statistics. *Biological Conservation* 98: 191-200.

McCarthy M.A., Possingham H.P., Day J.R. & Tyre A.J. 2001b. Testing the accuracy of population viability analysis. *Conservation Biology* 15: 1030-1038.

McGarigal K. & McComb W.C. 1995. Relationships between landscape structure and breeding birds in the Oregon Coast Range. *Ecological Monographs* 65: 235-260.

McGarigal K. & Cushman S. 2002. Comparative evaluation of experimental approaches to the study of habitat fragmentation. *Ecological Applications* 12: 335-345.

McGarigal K., Cushman S.A., Neel M.C. & Ene E. 2002. FRAGSTATS: Spatial pattern analysis program for categorical maps. Comp. software prog. Univ. Mass., Amherst. Sito web: www.umass.edu/landeco/research/fragstats/fragstats.html

McKelvey K., Noon B.R. & Lamberson R.H. 1992. Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. Pages: 424-450. In Kareiva P.M., Kingsolver J.G. & Huey R.B. (eds). Biotic interactions and global change. Sinauer, Boston, Massachusetts, USA.

Meffe G.K. & Vrijenhoek R.C. 1988. Conservation genetics in the management of desert fishes. *Conservation Biology* 2: 157-169.

Meir E. & Kareiva P. 1997. Contributions of spatially explicit landscape models to conservation biology. Pages: 497-507. In: Fiedler P.L. & Kareiva P. (eds). Conservation Biology for the Coming Decade. 2nd edn. Chapman & Hall, New York.

Mills L.S. 2006. Conservation of wildlife populations. Blackwell Publ. Malden, M.A.

Mills L.S., Fredrickson R.J. & Moorhead B.B. 1993. Characteristics of old-growth forests associated with northern spotted owls in Olympic national park. *J. Wildlife Management* 57: 315-321.

Mladenoff D.J., Sickley T.A. & Wydeven A.P. 1999. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. *Ecological Applications* 9: 37-44.

Morris P.A., Bright P.W. & Woods D. 1990. Use of nestboxes by the dormouse *Muscardinus avellanarius*. *Biol. Conserv.* 51: 1-13.

Morris P.A. 1999. *Muscardinus avellanarius* (Linnaeus, 1758). Pages: 296-297. In: Mitchell-Jones A.J., Amori G., Bogdanowicz W., Kryštufek B., Reijnders P.J.H., Spitzenberger F., Stubbe M., Thissen J.B.M., Vohralík V. & Zima J. (eds). Atlas of European Mammals. *The Academic Press*. London.

Morris W.F. & Doak D.F. 2002. Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, Sunderland, Mass.

Morris P.A. 2003. A review of research on british dormice (Gliridae) and the effect of increasing public and scientific awareness of these animals. *Acta Zoologica* 49: 125-130.

Mortelliti A. & Boitinai L. 2008. Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. *Lands. Ecol.* 23: 285-298.

Mortelliti A., Amori G., Annesi F. & Boitani L. 2009. Testing for the relative contribution of patch neighborhood, patch internal structure, and presence of predators and competitor species in determining distribution patterns of rodents in a fragmented landscape. *Canadian Journal of Zoology* 87: 1-9.

Mortelliti A., Amori G. & Boitani L. 2010a. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. *Oecologia* 163: 535-547.

Mortelliti A., Amori G., Capizzi D., Cervone C., Fagiani S., Pollini B. & Boitani L. 2010b. Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. *Diversity and distribution* DOI: 10.1111/j.1472-4642.2010.00701.x.

Mortelliti A., Amori G., Capizzi D., Rondinini C. & Boitani L. 2010c. Experimental design and taxonomic scope of fragmentation studies on European mammals: current status and future priorities. *Mammal Review* 40: 125-154.

Mortelliti A., Amori G., Capizzi D., Cervone C., Fagiani S., Pollini B. & Boitani L. 2011. Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. *Journal of Applied Ecology* 48: 153-162.

Mortelliti A. & Boitani L. Predicting without explaining: the rise and fall of patch size in fragmentation studies. *Submitted*.

Mortelliti A. 2012. Targeting habitat management in fragmented landscapes: a case study on forest vertebrates. *Submitted*.

Murcia C. 1995. Edge effects in fragmented forests: implications for conservation. *TREE* 10: 58-62.

Murphy D.D. & Noon B.R. 1992. Integrating scientific methods with habitat conservation planning: reserve design for Northern Spotted Owls. *Ecological Applications* 2: 3-17.

Nielson S.E., Stenhouse G.B. & Boyce M.S. 2006. A habitat-based framework for grizzly bear conservation in Alberta. *Biological Conservation* 130: 217-229.

Noss R.G. 1983. A regional landscape approach to maintain diversity. *Bioscience* 33: 700-706.

Noon B.R. & McKelvey K.S. 1992. Stability properties of the spotted owl metapopulation in southern California. Pages 187-206. In: Verner J. et al. (eds). The California spotted owl: a technical assessment of its current status. US Forest Service General Technical Report PSW-133.

O'Neill R.V., DeAngelis D.L., Waide J.B. & Allen T.F.H. 1986. A hierarchical concept of ecosystems. Princeton University Press, Princeton, New Jersey, USA.

Oliver P.I., Van Aarde R.J. & Ferreira S.M. 2009. Support for metapopulation structure among mammals. *Mammal Review* 39: 178-192.

Pacala S.W., Canham C.D. & Silander J.A. Jr. 1993. Forest models defined by field measurements: I. The design of a northeastern forest simulator. *Canadian Journal of Forest Research* 23: 1980-1988.

Palmer M.W. 1992. The coexistence of species in fractal landscapes. *American Naturalist* 139: 375-397.

Panchetti F., Amori G., Carpaneto G.M. & Sorace A. 2004. Activity patterns of the common dormouse (*Muscardinus avellanarius*) in different Mediterranean ecosystem. *J. Zool. Lond.* 262: 289-294.

Patriarca E. & Debernardi P. 1997. Insectivora, Chiroptera, Lagomorpha, Rodentia and Carnivora of the Gran Paradiso National Park: checklist and preliminary ecological characterization. *Ibex J.M.E.* 4: 17-32.

Pearce J.L. Burgman M.A. & Franklin D.C. 1994. Habitat selection by helmeted honeyeaters. *Wildlife Research* 21: 53-63.

Peres C.A. 1999. Nonvolant mammal community structure in di€erent Amazonian forest types. Pages: 564-581. In: Eisenberg J.F. & Redford K.H. (eds). Mammals of the Neotropics, Vol 3. University of Chicago Press, Chicago.

Pignatti S. 2002. Flora d'Italia. Vol. 1, 2, 3. Edagricole. Bologna.

Pignotti S. & Poncia P.P. 2009. Il sistema geografico della montagna del Lazio. Rapporto intermedio. Regione Lazio. Sito web: <u>http://sgml.eim.gov.it</u>

Pollock K.H., Nichols J.D., Brownie C. and Hines J.E. 1990. Statistical inference for capture-recapture experiments. *Wildlife Monographs* 107.

Possingham H.P. & Davies I. 1995. ALEX: a model for the viability analysis of spatially structured populations. *Biological conservation* 73: 143-150.

Powell A.H. & Powell G.V.N. 1987. Population dynamics of euglossine bees in Amazonian forest fragments. *Biotropica* 19: 176-179.

Pope S.E., Fahrig L. & Merriam H.G. 2000. Landscape complementation and metapopulation effects on leopard frog populations. *Ecology* 81: 2498-2508.

PTES 2009. The dormouse monitor. The newsletter of the national dormouse monitoring programme. People's Trust for Endangered Species. Sito web: <u>http://www.ptes.org</u>

PTES 2011. Hedgerows for Dormice. Improving wildlife corridors. People's Trust for Endangered Species. Sito web: <u>http://www.ptes.org</u>

Pulliam H.R. 1988. Sources, sinks and population regulation. *American Naturalist* 132: 652-661.

Pulliam H.R. & Danielson B.J. 1991. Sources, sinks, and habitat selection: a landscape perspective on population dynamics. *American Naturalist* 137: S50-S66.

Pulliam H.R., Dunning J.B. & Liu J. 1992. Population dynamics in complex landscapes: a case study. *Ecological Applications* 2: 165-177.

Pulliam H.R. & Dunning J.B. 1995. Spatially explicit population models. *Ecological Applications* 5: 2.

Pulliam R. 1996. Sources and sinks: empirical evidence and population consequence. Pages: 45-69. In: Rhodes O.E., Chesser R.K. & Smith M.H. Population Dynamics in Ecological Space and Time. University of Chicago Press, Chicago, Illinois, USA.

Radford J.Q. & Bennett A.F. 2007. The relative importance of landscape properties for woodland birds in agricultural environments. *Journal of Applied Ecology* 44: 737-747.

Recher H.F. 1999. The state of Australia's avifauna: a personal opinion and prediction for the new millennium. *Australian Zoologist* 31: 11-29.

Richards C.G.J., White A.C., Hurrel E. & Price F.E.F. 1984. The food of the common dormouse, *Muscardinus avellanarius*, in South Devon. *Mammal Review* 14: 19-28.

Root K.V. 1998. Evaluating the effects of habitat quality, connectivity, and catastrophes on a threatened species. *Ecological Applications* 8: 854-865.

Root K.V. 2004. Florida Panther (*Puma concolor coryi*) Using Models to Guide Recovery Efforts. Pages: 490-504. In: Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). Species Conservation and Management. Case Studies. University Press. Oxford.

Ruckelshaus M., Hartway C. & Kareiva P. 1997. Assessing the data requirement of spatially explicit dispersal models. *Conservation Biology* 11: 1298–1306.

Rushton S.P., Lurz P.W.W., Fuller R. & Garson P.J. 1997. Modelling the distribution of the red and grey squirrel at the landscape scale: a combined GIS and population dynamics approach. *J. Animal Ecology* 34: 1137-1154.

Rushton S.P., Barreto G.W., Cormack R.M., Macdonald D.W. & Fuller R. 2000. Modelling the effects of mink and habitat fragmentation on the water vole. *Journal of Applied Ecology* 37: 475–490.

Rykiel E.J., Coulson R.N., Sharpe P.J.H., Allen T.F. & Flamm R.O. 1988. Disturbance propagation by bark beetles as an episodic landscape phenomenon. *Landscape Ecology* 1: 129-139.

Santarelli L. 2011. Demografia del Moscardino (Muscardinus avellanarius L.) in paesaggi frammentati. Tesi di laurea specialistica in Conservazione e divulgazione naturalistica, Università degli Studi di Roma "La Sapienza", a.a. 2010-2011.

Santini L. 1983. I Roditori italiani di interesse agrario e forestale. Collana del progetto finalizzato "Promozione della Qualità dell'Ambiente". Consiglio Nazionale delle Ricerche AQ/1/232, Padova.

Sarà M., Spinnato A., Casamento G. & Romano S. 2000. Conservazione del moscardino, *Muscardinus avellanarius* (L. 1758) (Mammalia, Myoxidae) nel Parco delle Madonie (Sicilia). *Naturalista sicil.*, S. IV, 24 (1-2): 69-95.

Sarà M., Casamento G. & Spinato A. 2001. Density and breeding of *Muscardinus avellanarius* L. 1758 in woodlands of Sicily. *Trakya University Journal of Scientific Research*, series B 2: 85-93.

Sarà M., Milazzo A., Falletta W. & Bellia E. 2005. Exploitation competition between hole-nesters (*Muscardinus avellanrius*, Mammalia and *Parus caeruleus*, Aves) in Mediterranean woodlands. *J. Zool. Lond.* 265: 347-357.

Sarà M. 2007. Does the life history of *Muscardinus avellanarius* (Mammalia) follow an ecogeographic gradient? Third biennal conference of The International Biogeography Society. Tenerife, 9-13 gennaio 2007. Riassunti: 30.

Sarà M. & Sarà G. 2007. Trophic habits of *Muscardinus avellanarius* (Mammalia Gliridae) as revealed by multiple stable isotope analysis. *Ethology Ecology & Evolution* 19: 215-223.

Satoh K. 1990. Single and multiarmed spiral patterns in a cellular automaton model for an ecosystem. *Journal of the Physical Society of Japan* 59: 4204-4207.

Saunders D.A., Hobbs R.J. & Margules C.R. 1991. Biological consequences of eco system fragmentation: a review. *Conservation Biology* 5: 18-32.

Scaravelli D. & Aloise G. 1995. Predation on dormice in Italy. In: M. G. Filippucci (ed.). Proceedings of II Conference on Dormice (Rodentia, Myoxidae). Fuscaldo (CS), 15-19 maggio 1993. *Hystrix* (n.s.) 6: 245-255 (1994).

Schadt S., Revilla E., Wiegand T., Knauer F., Kaczensky P., Breitenmoser U., Bufka L., Cerveny J., Koubek P., Huber T., Stanisa C. & Trep L. 2002. Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. *Journal of Applied Ecology* 39: 189–203.

Schmiegelow F.K.A. & Monkkonen M. 2002. Habitat loss and fragmentation in dynamic landscapes: avian perspectives from the boreal forest. *Ecological Applications* 12: 375-389.

Scoppola A., Lattanzi E. & Anzalone B. 1996. La flora del Lamone. Ann. Bot. (Roma), 52 suppl. 11: 169-238.

Sezen Z., Akçakaya H.R. & Bilgin C.C. 2004. Turkish Mouflon (*Ovis gmelinii anatolica*) in Central Anatolia. Population Viability under Scenarios of Harvesting for Trophy. Pages: 459-468. In: Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). Species Conservation and Management. Case Studies. University Press. Oxford.

Shmida A. & Ellner S. 1984. Coexistence of plant species with similar niches. *Vegetatio* 58: 29–55.

Shugart H.H., Smith T.M. & Post W.M. 1992. The potential for application of individual-based simulation models for assessing the effects of global change. *Annual Reviews of Ecology and Systematics* 23: 15-39.

Simberloff D. 1987. The Spotted Owl fracas: mixing academic, applied, and political ecology. *Ecology* 68: 766-771.

Simson S., Ferrucci L., Kurtonur C., Özkan B. & Filippucci M.G. 1995. Phalli and bacula of european dormice: description and comparison. In: M. G. Filippucci (ed.). Proceedings of II Conference on Dormice (Rodentia, Myoxidae). Fuscaldo (CS), 15-19 maggio 1993. *Hystrix* (n.s.) 6: 231-244 (1994).

Sisk T.D., Haddad N.M. & Ehrlich P.R. 1997. Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitats. *Ecological Applications* 7: 1170-1180.

Sjögren-Gulve P. & Ebenhard T. (eds). 2000. The use of population viability analyses in conservation planning. *Ecological Bulletins* 48 (spetial edition).

Slatkin M. 1974. Competition and regional coexistence. *Ecology* 55: 128-134.

Sokal R.R. & ROHLF F.J. 1981. Biometry. W.H. Freeman & Co. San Francisco.

Solomon A.M. 1986. Transient response of forests to COZinduced climate change: simulation modeling experiments in eastern North America. *Oecologia* 68: 567-579.

Sorace A., Bellavita M., Borgna F., Iavicoli D., Laurenti S., Lupoli A., Messini M. & Palumbo G. 1994. Occupazione di nidi artificiali da parte del Moscardino *Muscardinus avellanarius* L. (Rodentia, Myoxidae) in alcune aree dell'Italia centro-meridionale. *Stud. Ric. Sist. Aree Prot. WWF It.* 2: 71-76.

Sorace A., Petrassi F., Tanda F., Landucci G. & Ruda P. 1998. Nest-box occupation by the dormouse *Muscardinus avellanarius* L. (Rodentia, Myoxidae). *Hystrix* (n.s.) 10: 37-40.

Sorace A., Bellavita M. & Amori G. 1999. Seasonal differences in nest-boxes occupation by the dormouse *Muscardinus avellanarius* L. (Rodentia, Myoxidae) in two areas of Central Italy. *Ecol. Mediterranea* 25: 125-130.

Soulé M.E. 1986. Conservation biology: the science of scarcity and diversity. Sinauer Associates. University of Minnesota.

Steffan-Dewenter I., Munzenberg U., Burger C., Thies C. & Tscharntke T. 2002. Scale-dependent effects of landscape context on three pollinator guilds. *Ecology* 83: 1421-32.

Stevens V.M. & Baguette M. 2008. Importance of habitat quality and landscape connectivity for the persistence of endangered Natterjack toads. *Conservation Biology* 22: 1194-1204.

Storch G. 1978. Fam. Gliridae Thomas 1897 – Schläfer. Pages: 201-208. In: Niethammer J. & Krapp F. (eds). Handbuch der Säugetiere Europas. Band 1. Rodentia I. Akademische Verlagsgesellschaft, Wiesbaden.

Stuart S.N., Chanson J.S., Cox N.A., Young B.E., Rodrigues A.S.L., Fischman D.L. & Waller R.W. 2004. Status and trends of amphibian declines and extinctions worldwide. *Science* 306: 1783-1786.

Swenson J.E., Gerstl N., Dahle B. & Zedrosser A. 2000. Action plan for the conservation of the brown bear (*Ursus arctos*) in Europe. Council of Europe, Report T-PVS (2000) 24.

Taylor P.D., Fahrig L., Henein K. & Merriam G. 1993. Connectivity is a vital element of landscape structure. *Oikos* 68: 571-572.

Taylor P.D. & Merriam G. 1995. Habitat fragmentation and parasitism of a forest damselfly. *Landscape Ecology* 11: 181-89.

Taylor P.D., Fahrig L. & With K.A. 2006. Landscape connectivity: a return to the basics. Pages: 29-43. In: Crooks K.R. & Sanjayan M. 2006. Connectivity Conservation. Cambridge University Press, UK.

Terborgh J. & Winter B. 1980. Some causes of extinction. Pages: 119-134. In: Soule M.E. & Wilcox B.A. Conservation Biology: an Evolutionary-Ecological Perspective. Sinauer, Sunderland, Massachusetts, USA.

Thomas J.W., Forsman E.D., Lint J.B., Meslow E.C., Noon B.R. & Verner J. 1990. A conservation strategy for the Northern Spotted Owl: report of the Interagency Scientific Committee to address the conservation of the Northern Spotted Owl (USDA: Forest Service, USDI: Bureau of Land Management, Fish and Wildlife Service, and National Park Service). 1990-791-171/20026. U.S. Government Printing Office. Washington, D.C., USA.

Thomas C.D. 1994. Extinction, colonization, and metapopulations: environmental tracking by rare species. *Conservation Biology* 8: 373-378.

Thomas J.A., Bourn N.A.D., Clarke R.T., Stewart K.E., Simcox D.J., Pearman G.S., Curtis R. & Goodger B. 2001. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. *Proc. R. Soc. B. Biol.* 268: 1791-1796.

Tischendorf L. & Fahrig L. 2000. On the usage and measurement of landscape connectivy. *Oikos* 90: 7-19.

Toschi A. 1965. Mammalia. Lagomorpha, Rodentia, Carnivora, Ungulata, Cetacea. Collana "Fauna d'Italia". Vol. VII. Calderini, Bologna.

Trzcinski M.K., Fahrig L. & Merriam G. 1999. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. *Ecological Applications* 9: 586-593.

Turner M.G. (eds). 1987. Landscape heterogeneity and disturbance. Springer-Verlag, New York, New York, USA.

Turner M.G. & Ruscher C.L. 1988. Changes in landscape patterns in Georgia, USA. *Landscape Ecology* 1: 241-251.

Turner M.G. 1989. Landscape ecology: the effect of pattern on process. *Annual Review of Ecology and Systematics* 20: 171-197.

Turner M.G., Dale V.H. & Garner R.H. 1989a. Predicting across scales: theory development and testing. *Landscape Ecology* 3: 245-252.

Turner M.G., Gardner R.H., Dale V.H. & O'Neill R.V. 1989b. Predicting the spread of disturbance across heterogeneous landscapes. *Oikos* 55: 121-129.

Turner M.G. 1990. Spatial and temporal analysis of landscape patterns. *Landscape Ecology* 4: 21-30.

Turner M.G., Wu Y., Romme W.H. & Wallace L.L. 1993. A landscape simulation model of winter foraging by large ungulates. *Ecological Modelling* 69: 163-184.

Turner M., Arthaud G.J., Engstrom R.T., Hejl S.J., Liu J., Loeb S. & McKelvey K. 1995. Usefulness of spatially-explicit population models in land management. *Ecological Applications* 5: 12–16.

Turner M.G. 2005. Landscape Ecology: what is the state of the science? *Annual Review of Ecology, Evolution and Systematics* 36: 319-344.

Vandermeer J.H. 1973. On the regional stabilization of locally unstable predator-prey relationships. *Journal of Theoretical Biology* 41: 161-70.

Verner J., Morrison M.L. & Ralph C.J. (eds). 1986. Wildlife 2000: modeling habitat relationships of terrestrial vertebrates. University of Wisconsin Press, Madison, Wis-USA.

Villard M.A., Trzcinski M.K. & Merriam G. 1999. Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. *Conservation Biology* 13: 774-783.

Walters C.J. 1986. Adaptive management of renewable natural resources. MacMillan, New York, New York, USA

Walters C.J. & Holling C.S. 1990. Large-scale management experiments and learning by doing. *Ecology* 71: 2060-2068.

Walters J.R., Ford H.A. & Cooper C.B. 1999. The ecological basis of sensitivity of brown treecreepers to habitat fragmentation: a preliminary assessment. *Biological Conservation* 90: 13-20.

Wennergren U., Ruckelshaus M. & Kareiva P. 1995. The promise and limitations of spatial models in conservation biology. *Oikos* 74: 349–356.

Wiegand T., Moloney K.A., Naves J. & Knauer F. 1999. Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. *American Naturalist* 154: 605-627

Wiegand T., Revilla E. & Knauer F. 2004. Dealing with uncertainty in spatially explicit population models. *Biodiversity and Conservation* 13: 53-78. Kluwer Academic Publishers. Netherlands.

Wiens J.A. 1976. Population responses to patchy environments. *Annual Review of Ecology and Systematics* 7: 81-120.

Wiens J.A. & Milne B.T. 1989. Scaling of 'landscapes' in landscape ecology, or, landscape ecology from a beetle's perspective. *Landscape Ecology* 3: 87-96.

Wiens J.A., Stenset N.C., Van Horne B. & Ims R.A. 1993. Ecological mechanism and Landscape Ecology. *Oikos* 66: 369-380.

Wilhere G.F. 2002. Adaptative Management in Habitat Conservation Plans. *Conservation Biology* 16: 20-29.

Wilcove D.S., McLellan C.H. & Dobson A.P. 1986. Habitat fragmentation in the temperate zone. Pages: 237-256. In: Soulé M.E. Conservation Biology. Sunderland, MA: Sinauer.

Wintle B.A., Bekessey S.A., Venier L.A., Pearce J.L. & Chisholm R.A. 2005. Utility of dynamiclandscape metapopulation models for sustainable forest management. *Conservation biology* 19: 1930-1943.

With K.A., Gardner R.H. & Turner M.G. 1997. Landscape connectivity and population distributions in heterogeneous environments. *Oikos* 78: 151-169.

Wolton R. 2009. Hazel dormouse *Muscardinus avellanarius* (L.) nest site selection in hedgerows. *Mammalia* 73: 7-12.

Yamada K., Ansari M., Harrington R., Morgan D. & Burgman M.A. 2004. Sindh Ibex (*Capra aegagrus blythi*) in Kirthar National Park, Pakistan. Sensitivity of a Habitat and Population Model. Pages: 469-481. In: Akçakaya H.R., Burgman M.A., Kindvall O., Wood C.C., Sjögren-Gulve P., Hatfield J.S. & McCarthy M.A. (eds). Species Conservation and Management. Case Studies. University Press. Oxford.

Yu L. & Lu J. 2011. Does landscape Fragmentation Influence Sex Ratio of Dioecious Plants? A Case Study of *Pistacia chinensis* in the Thousand-Island Lake Region of China. PLoS ONE 6(8): e22903. doi: 10.1371/journal.pone.0022903.

Zanette L., Doyle P. & Tremont S.M. 2000. Food shortage in small fragments: evidence from an area-sensitive passerine. *Ecology* 81: 1654-1666.

APPENDICE A

Sintesi delle principali definizione adottate in questa ricerca

Termine	Definizione
Habitat	Insieme delle risorse e condizioni necessarie alla presenza di una specie (Hall et al. 1997)
Perdita di habitat	Diminuzione della disponibilità di risorse e condizioni necessarie alla presenza e persistenza di una specie (Lindenmayer & Fischer 2007)
Frammentazione per se	Suddivisione di un grande habitat in frammenti sempre più piccoli e più isolati tra di Ioro (Fahrig 2003)
Degradazione dell'habitat	Graduale deterioramento della qualità dell'habitat (Mortelliti et al. 2010a)
Connettività	Grado di permeabilità del paesaggio ai movimenti degli individui tra patch (Taylor et al. 2003)
Paesaggio	Area definita dall'uomo di dimensione variabile tra circa 3 km ² e 300 km ² (Fischer & Lindenmayer 2007)
Patch	Area relativamente omogenea al suo interno che permette di differenziarla da ciò che la circonda
Matrice	Area la cui estensione è superiore a quella di tutti i patch che compongono il paesaggio. In paesaggi frammentati rappresenta le zone dove la vegetazione originaria è scomparsa.

APPENDICE B1

Variabili utilizzate nei modelli di regressione logistica per il calcolo della probabilità di presenza

Patch / Griglia	Variabile categorica	Dimensioni dei patch	Mean Edge Distance (1000m)	Mean Proximity Index (1000m)	Siepi connesse	Patch connessi
VT1	1	2,865	572,627	159,955	4	2
VT2	1	24,785	752,035	32,080	1	5
VT3	1	5,724	533,353	54,952	3	2
VT4	1	1,203	571,449	61,202	2	1
VT5	1	21,498	395,394	143,129	1	1
VT6	1	918,186	327,983	2.092,031	28	19
VT7	1	2,549	576,738	31,679	1	5
VT8	1	1,737	755,511	108,089	0	0
VT9	1	3,823	698,067	75,739	2	1
FS1	2	6,853	551,027	785,408	1	1
FS2	2	4,225	671,742	192,932	2	2
FS3	2	2,073	499,332	90,661	2	2
FS4	2	0,615	560,980	153,912	2	2
FS5	2	0,437	446,547	109,715	1	1
FS6	2	2,371	668,058	459,384	0	0
FS7	2	2,619	507,488	72,891	0	0
FS8	2	19,093	562,836	1.411,069	2	2
FS9	2	178,981	485,636	9.683,881	8	6
FS10	2	1,329	674,785	1.101,968	0	0
FS11	2	2,023	474,495	617,165	2	2
LM1	3	3.289,118	316,005	3.776,321	59	37
LM2	3	3.289,118	316,005	3.776,321	59	37
LM3	3	3.289,118	316,005	3.776,321	59	37
LM4	3	3.289,118	316,005	3.776,321	59	37
LM5	3	3.289,118	316,005	3.776,321	59	37
LM6	3	3.289,118	316,005	3.776,321	59	37
LM7	3	3.289,118	316,005	3.776,321	59	37
LM8	3	3.289,118	316,005	3.776,321	59	37

APPENDICE B2

Media, deviazione standard (S.D.), mediana e range (Min e Max) delle variabili utilizzate nei modelli di regressione logistica per il calcolo della probabilità di presenza

	Media	S.D.	Mediana	Min	Мах
Dimensioni dei patch	982,71	1495,46	6,29	0,44	3289,12
Mean Edge Distance (1000m)	493,36	148,81	503,41	316,01	755,51
Mean Proximity Index (1000m)	1701,73	2242,08	538,27	31,68	9683,88
Siepi connesse	19,07	26,23	2	0	59
Patch connessi	12,50	16,17	2	0	37

APPENDICE B3

Variabili utilizzate nei modelli di regressione lineare multipla per il calcolo della carrying capacity

Patch / Griglia	Densità stagionale massima	Densità mensile maggio 2010	Probabilità di presenza
VT1	0,00	0,00	0,711
VT2	1,82	0,00	0,964
VT3	0,00	0,00	0,842
VT4	0,00	0,00	0,484
VT5	0,42	0,14	0,959
VT6	0,00	0,00	0,999
VT7	1,39	1,19	0,684
VT8	0,25	0,00	0,585
VT9	0,15	0,15	0,772
FS1	0,09	0,09	0,669
FS2	0,16	0,16	0,542
FS3	0,00	0,00	0,349
FS4	0,00	0,00	0,122
FS5	0,00	0,00	0,087
FS6	0,00	0,00	0,383
FS7	0,00	0,00	0,410
FS8	0,00	0,00	0,863
FS9	0,13	0,00	0,987
FS10	0,00	0,00	0,246
FS11	0,00	0,00	0,343
LM1	0,70	0,00	1,000
LM2	0,84	0,14	1,000
LM3	0,00	0,00	1,000
LM4	6,87	0,28	1,000
LM5	2,10	0,14	1,000
LM6	2,10	0,00	1,000
LM7	1,12	0,00	1,000
LM8	5.61	1.68	1.000

ed initial abundance

APPENDICE C

Indice di abbondanza annuale 2010 per ciascun patch calcolato attraverso il rapporto tra il numero totale di individui marcati e l'area della griglia comprensiva di boundary strip.

V	iterbo	S	abina	Lamone		
Patch	Patch Abbondanza Annuale 2010		Indice Abbondanza Annuale 2010	Patch	Indice Abbondanza Annuale 2010	
VT1	0,00	FS1	0,09	LM1	1,12	
VT2	1,96	FS2	0,16	LM2	0,98	
VT3	0,00	FS3	0,00	LM3	0,00	
VT4	0,00	FS4	0,00	LM4	8,13	
VT5	0,84	FS5	0,00	LM5	2,38	
VT6	0,00	FS6	0,00	LM6	2,94	
VT7	1,79	FS7	0,00	LM7	1,82	
VT8	0,25	FS8	0,00	LM8	8,13	
VT9	0,15	FS9	0,13			
		FS10	0,00			
		FS11	0,00			

Indice di abbondanza annuale 2010

APPENDICE D

Mappa di idoneità ambientale dei paesaggi con disegnati i patch occupati dalle popolazioni all'inizio della simulazione negli scenari di non cambiamento dell'habitat.

Mappa di idoneità ambientale del paesaggio del Lamone

Mappa di idoneità ambientale del paesaggio di Viterbo

Mappa di idoneità ambientale del paesaggio della Sabina

APPENDICE E

Valori totali di habitat suitability (Total HS) per ogni patch e valori di carrying capacity (K) e initial abundance (Init. abund.) patch-specifici per i tre paesaggi negli scenari di non cambiamento dell'habitat. Alla fine delle tabelle sono riportati i valori totali di questi parametri, relativi a tutto il paesaggio.

Patch	Total	к	Init.	Patch	Total	к	Init.
	HS		abund.		HS		abund.
1	123	1	1	96	891	7	4
2	159	1	1	97	689	6	3
3	219	2	1	98	252	2	1
4	154	1	1	99	694	6	3
5	232	2	1	100	152	1	1
6	639	5	3	101	343	3	2
7	346	3	2	102	16492	136	79
8	1030	8	5	103	137	1	1
9	122	1	1	104	242	2	1
10	230	2	1	105	400	3	2
11	154	1	1	106	164	1	1
12	797	7	4	107	199	2	1
13	185	2	1	108	150	1	1
14	2856	23	14	109	165	1	1
15	4221	35	20	110	708	6	3
16	137	1	1	111	541	4	3
17	1054	9	5	112	133	1	1
18	637	5	3	113	184	2	1
19	1736	14	8	114	216	2	1
20	137	1	1	115	318526	2620	1525
21	326	3	2	116	435	4	2
22	34556	284	165	117	155	1	1
23	158	1	1	118	997	8	5
24	209	2	1	119	10423	86	50
25	184	2	1	120	139	1	1
26	461	4	2	121	319	3	2
27	173	1	1	122	20342	167	97
28	238	2	1	123	195	2	1
29	258	2	1	124	1295	11	6
30	4778	39	23	125	1324	11	6
31	365	3	2	126	23872	196	114
32	289	2	1	127	1133	9	5
33	395	3	2	128	727	6	3
34	224	2	1	129	544	4	3

HS, numerosità (Init. abund.) e carrying capacity (K) per il paesaggio del Lamone

35	752	6	4	130	381	3	2
36	772	6	4	131	136	1	1
37	153	1	1	132	238	2	1
38	890	7	4	133	173	1	1
39	276	2	1	134	122	1	1
40	495	4	2	135	260	2	1
41	501	4	2	136	1151	9	6
42	1815	15	9	137	122	1	1
43	212	2	1	138	324	3	2
44	133	1	1	139	177	1	1
45	491	4	2	140	128	1	1
46	632	5	3	141	952	8	5
47	192	2	1	142	122	1	1
48	277	2	1	143	348	3	2
49	411	3	2	144	1396	11	7
50	434	4	2	145	856	7	4
51	3733	31	18	146	356	3	2
52	347	3	2	147	177	1	1
53	169	1	1	148	378	3	2
54	159	1	1	149	181	1	1
55	152	1	1	150	188	2	1
56	19431	160	93	151	1226	10	6
57	7916	65	38	152	1204	10	6
58	171	1	1	153	4029	33	19
59	205	2	1	154	133	1	1
60	227	2	1	155	431	4	2
61	800	7	4	156	2325	19	11
62	760	6	4	157	352	3	2
63	159	1	1	158	2858	24	14
64	579	5	3	159	130	1	1
65	338	3	2	160	280	2	1
66	170	1	1	161	383	3	2
67	226	2	1	162	219	2	1
68	183	2	1	163	257	2	1
69	184	2	1	164	192	2	1
70	355	3	2	165	1487	12	7
71	172	1	1	166	1328	11	6
72	151	1	1	167	285	2	1
73	470	4	2	168	66757	549	320
74	482	4	2	169	2432	20	12
75	130	1	1	170	207	2	1
76	2697	22	13	171	258	2	1
77	7972	66	38	172	679	6	3
78	215	2	1	173	129	1	1
79	2081	17	10	174	150	1	1
80	9208	76	44	175	3202	26	15
81	314	3	2	176	196	2	1

82	231	2	1	177	141	1	1
83	174	1	1	178	32288	266	155
84	210	2	1	179	1920	16	9
85	10209	84	49	180	177	1	1
86	181	1	1	181	141064	1160	675
87	122	1	1	182	1028	8	5
88	744	6	4	183	496	4	2
89	922	8	4	184	244	2	1
90	139	1	1	185	463	4	2
91	186	2	1	186	2957	24	14
92	122	1	1	187	869	7	4
93	521	4	2	188	375	3	2
94	224	2	1	189	23304	192	112
95	226	2	1	SUM:	848384	6974	4075

HS, numerosità (Init. abund.) e carrying capacity (K) per il paesaggio di Viterbo

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	5317	44	26	76	176	2	1
2	410	4	2	77	281	3	2
3	222	2	1	78	209	2	1
4	765	7	4	79	364	3	2
5	198	2	1	80	244	2	2
6	645	6	3	81	824	7	4
7	324	3	2	82	46998	387	225
8	583	5	3	83	164	2	1
9	232	2	1	84	169	2	1
10	2140	18	11	85	6566	54	31
11	1962	17	10	86	1083	9	6
12	360	3	2	87	182	2	1
13	1035	9	5	88	201	2	1
14	3516	29	17	89	1227	11	6
15	382	4	2	90	1800	15	9
16	227	2	1	91	540	5	3
17	631	6	3	92	484	4	3
18	308	3	2	93	2385	20	12
19	1125	9	5	94	153	1	1
20	1717	15	9	95	173	2	1
21	2888	24	14	96	421	4	2
22	4819	40	23	97	316	3	2
23	1618	13	8	98	642	6	3
24	240	2	1	99	359	3	2
25	1303	11	7	100	409	4	2
26	636	5	3	101	670	6	4

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
28 5850 48 28 103 300 3 2 29 7422 61 36 104 568 5 3 30 410 4 2 105 192 2 1 31 228 2 1 106 227 2 1 32 273 3 2 107 186 2 1 33 974 8 5 108 310 3 2 34 1810 15 9 109 227 2 1 35 3231 27 16 110 407 4 2 36 433 4 2 111 2068 17 100 37 165 2 1 112 282 3 2 38 1001 9 5 113 1837 16 9 40 288 3 2 116 3252 27 16 41 350 3 2 116 3252 27 16 42 1852 16 9 117 309 3 2 43 161 1 1 118 204 2 1 44 1677 14 8 119 29087 239 139 45 256 2 2 120 1410 12 7 46 301 3 2 121 3596 30	
29 7422 61 36 104 568 5 3 30 410 4 2 105 192 2 1 31 228 2 1 106 227 2 1 32 273 3 2 107 186 2 1 33 974 8 5 108 310 3 2 34 1810 15 9 109 227 2 1 35 3231 27 16 110 407 4 2 36 433 4 2 111 2068 17 100 37 165 2 1 112 282 3 2 38 1001 9 5 113 1837 16 9 39 454 4 2 114 20651 170 99 40 288 3 2 115 268 3 2 41 350 3 2 116 3252 27 16 42 1852 16 9 117 309 3 2 43 161 1 1 118 204 2 1 44 1677 14 8 119 29087 239 139 45 256 2 2 120 1410 12 7 46 301 3 2 121 3596 30 <	
30 410 4 2 105 192 2 1 31 228 2 1 106 227 2 1 32 273 3 2 107 186 2 1 33 974 8 5 108 310 3 2 34 1810 15 9 109 227 2 1 35 3231 27 16 110 407 4 2 36 433 4 2 111 2068 17 100 37 165 2 1 112 282 3 2 38 1001 9 5 113 1837 16 9 39 454 4 2 114 20651 170 99 40 288 3 2 115 268 3 2 41 350 3 2 116 3252 27 16 42 1852 16 9 117 309 3 2 43 161 1 1 118 204 2 1 44 1677 14 8 119 29087 239 139 45 256 2 2 120 1410 12 7 46 301 3 2 121 3596 30 18 47 716 6 4 123 1105 9 <t< td=""><td></td></t<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
49 4538 38 22 124 269 3 2 50 193 2 1 125 2975 25 15 51 266 3 2 126 1725 15 9 52 1216 10 6 127 174 2 1 53 1910 16 10 128 3031 25 15 54 481 4 3 129 424 4 2	
50 193 2 1 125 2975 25 15 51 266 3 2 126 1725 15 9 52 1216 10 6 127 174 2 1 53 1910 16 10 128 3031 25 15 54 481 4 3 129 424 4 2	
51 266 3 2 126 1725 15 9 52 1216 10 6 127 174 2 1 53 1910 16 10 128 3031 25 15 54 481 4 3 129 424 4 2	
52 1216 10 6 127 174 2 1 53 1910 16 10 128 3031 25 15 54 481 4 3 129 424 4 2	
53 1910 16 10 128 3031 25 15 54 481 4 3 129 424 4 2 55 247 2 2 120 1054 0 5	
54 481 4 3 129 424 4 2 55 247 2 2 120 1054 0 5	
55 317 3 2 130 1054 9 5	
56 23581 194 113 131 752 7 4	
57 4608 38 22 132 7121 59 34	
58 873 8 5 133 6528 54 31	
59 9748 80 47 134 628 6 3	
60 170 2 1 135 1026 9 5	
617036413625982213	
62 1911 16 10 137 301 3 2	
63 1631 14 8 138 894 8 5	
6440482333194139107496	
65 186 2 1 140 163 2 1	
66 484 4 3 141 404 4 2	
67 197 2 1 142 1036 9 5	
68 349 3 2 143 1544 13 8	
69 205 2 1 144 25225 208 121	
70 213 2 1 145 2154 18 11	
71 185 2 1 146 1011 9 5	
72 298 3 2 147 202 2 1	
73 1189 10 6 148 144 1 1	

74	738	6	4	149	500	5	3
75	756	7	4	SUM:	405887	3392	1987

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	588	5	3	33	1064	10	6
2	144	1	1	34	74223	611	356
3	1407	13	8	35	1651	15	9
4	1184	11	7	36	307	3	2
5	1077	10	6	37	1099	10	6
6	620	6	4	38	1443	13	8
7	6184	52	31	39	6517	55	32
8	436	4	3	40	474	5	3
9	990	9	6	41	1441	13	8
10	636	6	4	42	300	2	1
11	678	7	4	43	17653	146	85
12	514	5	3	44	1648	15	9
13	671	6	4	45	570	6	4
14	482	4	2	46	153	1	1
15	1193	11	7	47	3029	26	16
16	5502	45	27	48	1336	12	7
17	779	7	5	49	487	5	3
18	496	5	3	50	22135	183	107
19	1268	12	7	51	472	5	3
20	900	8	5	52	687	7	4
21	55083	1276	743	53	1309	12	7
22	527	5	4	54	8572	72	42
23	818	8	5	55	540	5	4
24	3852	33	20	56	516	5	3
25	10610	88	52	57	3365	28	16
26	17216	142	83	58	590	6	4
27	3076	26	16	59	838	8	5
28	832	7	4	60	80580	663	386
29	9006	75	44	61	569	6	4
30	3075	26	16	62	10198	85	50
31	2041	18	11	63	269	2	1
32	1242	11	7	SUM:	77160	3977	2337

HS, numerosità (Init. abund.) e carrying capacity (K) per il paesaggio della Sabina

APPENDICE F

Indici geometrici dei patch che compongono i paesaggi negli scenari di non cambiamento dell'habitat: area dei patch (in km²), area dei patch espressa come percentuale rispetto l'estensione di tutti gli altri patch presenti nel paesaggio (Area as % of patches) e rispetto l'estensione totale del paesaggio (Area as % of landsc.), perimetro dei patch (in km; Edge) e rapporto tra il perimetro e l'area di ciascun patch (indice di forma dei patch; Edge:A). Alla fine delle tabelle sono riportati i valori medi delle aree, dei perimetri e dei rapporti tra i perimetri e le aree dei patch che compongono il paesaggio.

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,0	0,01%	0,00%	80	65,04	96	0,1	0,11%	0,04%	320	35,91
2	0,0	0,02%	0,01%	96	60,38	97	0,1	0,08%	0,03%	434	62,99
3	0,0	0,03%	0,01%	92	42,01	98	0,0	0,03%	0,01%	100	39,68
4	0,0	0,02%	0,01%	102	66,23	99	0,1	0,08%	0,03%	422	60,81
5	0,0	0,03%	0,01%	160	68,97	100	0,0	0,02%	0,01%	92	60,53
6	0,1	0,08%	0,03%	182	28,48	101	0,0	0,04%	0,01%	176	51,31
7	0,0	0,04%	0,01%	154	44,51	102	1,6	1,94%	0,65%	3554	27,64
8	0,1	0,12%	0,04%	390	37,86	103	0,0	0,02%	0,01%	108	78,83
9	0,0	0,01%	0,00%	324	90,16	104	0,0	0,03%	0,01%	132	54,55
10	0,0	0,03%	0,01%	224	97,39	105	0,0	0,05%	0,02%	401	40,00
11	0,0	0,02%	0,01%	96	62,34	106	0,0	0,02%	0,01%	66	40,24
12	0,1	0,09%	0,03%	162	20,33	107	0,0	0,02%	0,01%	142	71,36
13	0,0	0,02%	0,01%	142	76,76	108	0,0	0,02%	0,01%	114	76,00
14	0,3	0,34%	0,11%	726	25,42	109	0,0	0,02%	0,01%	154	93,33
15	0,4	0,50%	0,17%	964	27,06	110	0,1	0,08%	0,03%	180	25,42
16	0,0	0,02%	0,01%	104	75,91	111	0,1	0,06%	0,02%	328	60,63
17	0,1	0,12%	0,04%	196	18,60	112	0,0	0,02%	0,01%	102	76,69
18	0,1	0,08%	0,03%	220	34,54	113	0,0	0,02%	0,01%	122	66,30
19	0,2	0,20%	0,07%	710	40,90	114	0,0	0,03%	0,01%	208	96,30
20	0,0	0,02%	0,01%	98	71,53	115	31,9	37,55%	12,54%	14950	9,04
21	0,0	0,04%	0,01%	148	45,40	116	0,0	0,05%	0,02%	328	75,40
22	3,5	4,07%	1,36%	5451	16,69	117	0,0	0,02%	0,01%	74	47,74
23	0,0	0,02%	0,01%	142	89,87	118	0,1	0,12%	0,04%	490	49,15
24	0,0	0,02%	0,01%	114	54,55	119	1,0	1,23%	0,41%	2408	26,50
25	0,0	0,02%	0,01%	86	46,74	120	0,0	0,02%	0,01%	82	58,99
26	0,0	0,05%	0,02%	671	51,19	121	0,0	0,04%	0,01%	122	38,24
27	0,0	0,02%	0,01%	102	58,96	122	2,0	2,40%	0,80%	4182	20,92
28	0,0	0,03%	0,01%	124	52,10	123	0,0	0,02%	0,01%	106	54,36
29	0,0	0,03%	0,01%	98	37,98	124	0,1	0,15%	0,05%	562	43,40
30	0,5	0,56%	0,19%	996	23,86	125	0,1	0,16%	0,05%	412	31,12
31	0,0	0,04%	0,01%	220	60,27	126	2,4	2,81%	0,94%	7640	33,52

Indici geometrici dei patch del paesaggio del Lamone

32	0,0	0,03%	0,01%	186	64,36	127	0,1	0,13%	0,04%	572	50,49
33	0,0	0,05%	0,02%	236	59,75	128	0,1	0,09%	0,03%	190	26,13
34	0,0	0,03%	0,01%	401	64,29	129	0,1	0,06%	0,02%	270	49,63
35	0,1	0,09%	0,03%	400	53,19	130	0,0	0,04%	0,01%	220	57,74
36	0,1	0,09%	0,03%	248	32,12	131	0,0	0,02%	0,01%	130	95,59
37	0,0	0,02%	0,01%	160	104,50	132	0,0	0,03%	0,01%	152	63,87
38	0,1	0,10%	0,04%	506	56,85	133	0,0	0,02%	0,01%	106	61,27
39	0.0	0.03%	0.01%	144	52.17	134	0.0	0.01%	0.00%	100	81.97
40	0.0	, 0.06%	0.02%	206	41.62	135	0.0	0.03%	0.01%	214	82.31
41	0.1	0.06%	0.02%	298	59.48	136	0.1	0.14%	0.05%	614	53.34
42	0.2	0.21%	0.07%	672	37.02	137	0.0	0.01%	0.00%	126	103.20
43	0.0	0.02%	0.01%	134	63.21	138	0.0	0.04%	0.01%	182	56.17
44	0.0	0.02%	0.01%	86	64.66	139	0.0	0.02%	0.01%	134	75.71
45	0.0	0.06%	0.02%	160	32 59	140	0.0	0.02%	0.01%	110	85 94
46	0.1	0.07%	0.02%	244	38 61	141	0.1	0.11%	0.04%	496	52 10
40	0.0	0.02%	0.01%	148	77 08	142	0.0	0,11%	0.00%	72	59 02
47 //8	0,0	0,02%	0,01%	196	70.76	1/2	0,0	0,01%	0,00%	7 <u>2</u> 218	62.64
40	0,0	0,05%	0,01%	206	72.02	143	0,0	0,0470	0,01%	510	27.68
4J 50	0,0	0,05%	0,02%	220	52.46	1/15	0,1	0,10%	0,03%	208	2/ 21
51	0,0	0,03%	0,02%	1620	13 66	145	0,1	0,10%	0,03%	10/	54,01
51	0,4	0,44%	0,1370	160	45,00	140	0,0	0,04%	0,01%	1.10	02 62
52	0,0	0,04%	0,01%	162	40,09	147	0,0	0,02%	0,01%	140	05,02 40.21
55	0,0	0,02%	0,01%	100	94,07	148	0,0	0,04%	0,01%	152	40,21
54	0,0	0,02%	0,01%	132	83,02 F0.00	149	0,0	0,02%	0,01%	98	54,14
55	0,0	0,02%	0,01%	76	50,00	150	0,0	0,02%	0,01%	122	64,89
50	1,9	2,29%	0,76%	3448	18,34	151	0,1	0,14%	0,05%	214	17,46
57	0,8	0,93%	0,31%	1132	14,30	152	0,1	0,14%	0,05%	532	44,19
58	0,0	0,02%	0,01%	104	60,82	153	0,4	0,47%	0,16%	1110	29,49
59	0,0	0,02%	0,01%	128	62,44	154	0,0	0,02%	0,01%	70	52,63
60	0,0	0,03%	0,01%	110	48,46	155	0,0	0,05%	0,02%	134	31,09
61	0,1	0,09%	0,03%	252	31,50	150	0,2	0,27%	0,09%	276	11,87
62	0,1	0,09%	0,03%	550	72,37	157	0,0	0,04%	0,01%	142	40,34
63	0,0	0,02%	0,01%	130	81,76	158	0,3	0,34%	0,11%	/50	26,66
64	0,1	0,07%	0,02%	138	23,83	159	0,0	0,02%	0,01%	80	61,54
65	0,0	0,04%	0,01%	144	42,60	160	0,0	0,03%	0,01%	120	42,86
66	0,0	0,02%	0,01%	154	90,59	161	0,0	0,05%	0,02%	150	39,16
67	0,0	0,03%	0,01%	136	60,18	162	0,0	0,03%	0,01%	116	52,97
68	0,0	0,02%	0,01%	116	63,39	163	0,0	0,03%	0,01%	478	65,37
69	0,0	0,02%	0,01%	124	67,39	164	0,0	0,02%	0,01%	92	47,92
70	0,0	0,04%	0,01%	128	36,06	165	0,1	0,18%	0,06%	354	23,81
71	0,0	0,02%	0,01%	116	67,44	166	0,1	0,16%	0,05%	602	45,33
72	0,0	0,02%	0,01%	72	47,68	167	0,0	0,03%	0,01%	242	84,91
73	0,0	0,06%	0,02%	328	69,79	168	6,7	7,87%	2,63%	8523	19,46
74	0,0	0,06%	0,02%	300	62,24	169	0,2	0,29%	0,10%	632	25,99
75	0,0	0,02%	0,01%	78	60,00	170	0,0	0,02%	0,01%	376	65,70
76	0,3	0,32%	0,11%	834	30,92	171	0,0	0,03%	0,01%	152	58,91
77	0,8	0,94%	0,31%	2328	31,59	172	0,1	0,08%	0,03%	198	29,16
78	0,0	0,03%	0,01%	148	68,84	173	0,0	0,02%	0,01%	76	58,91

79 0,2 0,25% 0,08% 732 35,18 174 0,0 0,02% 0,01% 100 66,67 80 0,9 1,09% 0,36% 3672 33,30 175 0,3 0,38% 0,13% 840 26,23 81 0,0 0,04% 0,01% 198 63,06 176 0,0 0,02% 0,01% 336 70,41 82 0,0 0,03% 0,01% 184 79,65 177 0,0 0,02% 0,01% 106 75,18 83 0,0 0,02% 0,01% 160 91,95 178 3,2 3,81% 1,27% 4018 16,32 84 0,0 0,02% 0,01% 1920 20,77 180 0,0 0,02% 0,01% 70 39,55 86 0,0 0,01% 0,00% 76 62,30 182 0,1 0,12% 0,04% 290 28,21 87 0,0 0,01% </th <th></th>												
80 0,9 1,09% 0,36% 3672 33,30 175 0,3 0,38% 0,13% 840 26,23 81 0,0 0,04% 0,01% 198 63,06 176 0,0 0,02% 0,01% 336 70,41 82 0,0 0,03% 0,01% 184 79,65 177 0,0 0,02% 0,01% 106 75,18 83 0,0 0,02% 0,01% 160 91,95 178 3,2 3,81% 1,27% 4018 16,32 84 0,0 0,02% 0,01% 419 70,48 179 0,2 0,23% 0,08% 408 21,25 85 1,0 1,20% 0,40% 1920 20,77 180 0,0 0,02% 0,01% 70 39,55 86 0,0 0,01% 0,00% 76 62,30 181 14,1 16,63% 5,55% 7515 8,54 87 0,0 0,01%	79	0,2	0,25%	0,08%	732	35,18	174	0,0	0,02%	0,01%	100	66,67
81 0,0 0,04% 0,01% 198 63,06 176 0,0 0,02% 0,01% 336 70,41 82 0,0 0,03% 0,01% 184 79,65 177 0,0 0,02% 0,01% 106 75,18 83 0,0 0,02% 0,01% 160 91,95 178 3,2 3,81% 1,27% 4018 16,32 84 0,0 0,02% 0,01% 419 70,48 179 0,2 0,23% 0,08% 408 21,25 85 1,0 1,20% 0,40% 1920 20,77 180 0,0 0,02% 0,01% 70 39,55 86 0,0 0,02% 0,01% 120 66,30 181 14,1 16,63% 5,55% 7515 8,54 87 0,0 0,01% 0,00% 76 62,30 182 0,1 0,12% 0,04% 290 28,21 88 0,1 0,09% 0,03% 322 43,28 183 0,0 0,02% 318 64,11	80	0,9	1,09%	0,36%	3672	33,30	175	0,3	0,38%	0,13%	840	26,23
82 0,0 0,03% 0,01% 184 79,65 177 0,0 0,02% 0,01% 106 75,18 83 0,0 0,02% 0,01% 160 91,95 178 3,2 3,81% 1,27% 4018 16,32 84 0,0 0,02% 0,01% 419 70,48 179 0,2 0,23% 0,08% 408 21,25 85 1,0 1,20% 0,40% 1920 20,77 180 0,0 0,02% 0,01% 70 39,55 86 0,0 0,02% 0,01% 120 66,30 181 14,1 16,63% 5,55% 7515 8,54 87 0,0 0,01% 0,00% 76 62,30 182 0,1 0,12% 0,04% 290 28,21 88 0,1 0,09% 0,03% 322 43,28 183 0,0 0,01% 126 51,64 90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,02% 160 34,56	81	0,0	0,04%	0,01%	198	63,06	176	0,0	0,02%	0,01%	336	70,41
83 0,0 0,02% 0,01% 160 91,95 178 3,2 3,81% 1,27% 4018 16,32 84 0,0 0,02% 0,01% 419 70,48 179 0,2 0,23% 0,08% 408 21,25 85 1,0 1,20% 0,40% 1920 20,77 180 0,0 0,02% 0,01% 70 39,55 86 0,0 0,02% 0,01% 120 66,30 181 14,1 16,63% 5,55% 7515 8,54 87 0,0 0,01% 0,00% 76 62,30 182 0,1 0,12% 0,04% 290 28,21 88 0,1 0,09% 0,03% 322 43,28 183 0,0 0,06% 0,02% 318 64,11 89 0,1 0,11% 0,04% 220 23,86 184 0,0 0,03% 0,01% 126 51,64 90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,02% 1038 38,21	82	0,0	0,03%	0,01%	184	79,65	177	0,0	0,02%	0,01%	106	75,18
84 0,0 0,02% 0,01% 419 70,48 179 0,2 0,23% 0,08% 408 21,25 85 1,0 1,20% 0,40% 1920 20,77 180 0,0 0,02% 0,01% 70 39,55 86 0,0 0,02% 0,01% 120 66,30 181 14,1 16,63% 5,55% 7515 8,54 87 0,0 0,01% 0,00% 76 62,30 182 0,1 0,12% 0,04% 290 28,21 88 0,1 0,09% 0,03% 322 43,28 183 0,0 0,06% 0,02% 318 64,11 89 0,1 0,11% 0,04% 220 23,86 184 0,0 0,03% 0,01% 34,56 90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,02% 160 34,56 91 0,0 0,02% 0,01% 80 43,01 186 0,3 0,35% 0,12% 1038 38,21	83	0,0	0,02%	0,01%	160	91,95	178	3,2	3,81%	1,27%	4018	16,32
851,01,20%0,40%192020,771800,00,02%0,01%7039,55860,00,02%0,01%12066,3018114,116,63%5,55%75158,54870,00,01%0,00%7662,301820,10,12%0,04%29028,21880,10,09%0,03%32243,281830,00,06%0,02%31864,11890,10,11%0,04%22023,861840,00,03%0,01%12651,64900,00,02%0,01%6848,921850,00,05%0,02%16034,56910,00,02%0,01%8043,011860,30,35%0,12%103838,21920,00,01%0,00%122100,001870,10,10%0,03%24027,62930,10,06%0,02%27452,591880,00,04%0,01%11630,93940,00,03%0,01%11250,001892,32,75%0,92%12005,60950,00,03%0,01%14463,72Media:0,433,57%716,63	84	0,0	0,02%	0,01%	419	70,48	179	0,2	0,23%	0,08%	408	21,25
86 0,0 0,02% 0,01% 120 66,30 181 14,1 16,63% 5,55% 7515 8,54 87 0,0 0,01% 0,00% 76 62,30 182 0,1 0,12% 0,04% 290 28,21 88 0,1 0,09% 0,03% 322 43,28 183 0,0 0,06% 0,02% 318 64,11 89 0,1 0,11% 0,04% 220 23,86 184 0,0 0,03% 0,01% 126 51,64 90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,05% 0,02% 160 34,56 91 0,0 0,02% 0,01% 80 43,01 186 0,3 0,35% 0,12% 1038 38,21 92 0,0 0,01% 0,00% 122 100,00 187 0,1 0,10% 0,03% 240 27,62 93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,04% 0,01% 116	85	1,0	1,20%	0,40%	1920	20,77	180	0,0	0,02%	0,01%	70	39,55
870,00,01%0,00%7662,301820,10,12%0,04%29028,21880,10,09%0,03%32243,281830,00,06%0,02%31864,11890,10,11%0,04%22023,861840,00,03%0,01%12651,64900,00,02%0,01%6848,921850,00,05%0,02%16034,56910,00,02%0,01%8043,011860,30,35%0,12%103838,21920,00,01%0,00%122100,001870,10,10%0,03%24027,62930,10,06%0,02%27452,591880,00,04%0,01%11630,93940,00,03%0,01%11250,001892,32,75%0,92%12005,60950,00,03%0,01%14463,72Media:0,433,57%716,63	86	0,0	0,02%	0,01%	120	66,30	181	14,1	16,63%	5,55%	7515	8,54
88 0,1 0,09% 0,03% 322 43,28 183 0,0 0,06% 0,02% 318 64,11 89 0,1 0,11% 0,04% 220 23,86 184 0,0 0,03% 0,01% 126 51,64 90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,05% 0,02% 160 34,56 91 0,0 0,02% 0,01% 80 43,01 186 0,3 0,35% 0,12% 1038 38,21 92 0,0 0,01% 0,00% 122 100,00 187 0,1 0,10% 0,03% 240 27,62 93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,04% 0,01% 116 30,93 94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	87	0,0	0,01%	0,00%	76	62,30	182	0,1	0,12%	0,04%	290	28,21
89 0,1 0,11% 0,04% 220 23,86 184 0,0 0,03% 0,01% 126 51,64 90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,05% 0,02% 160 34,56 91 0,0 0,02% 0,01% 80 43,01 186 0,3 0,35% 0,12% 1038 38,21 92 0,0 0,01% 0,00% 122 100,00 187 0,1 0,10% 0,03% 240 27,62 93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,01% 116 30,93 94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	88	0,1	0,09%	0,03%	322	43,28	183	0,0	0,06%	0,02%	318	64,11
90 0,0 0,02% 0,01% 68 48,92 185 0,0 0,05% 0,02% 160 34,56 91 0,0 0,02% 0,01% 80 43,01 186 0,3 0,35% 0,12% 1038 38,21 92 0,0 0,01% 0,00% 122 100,00 187 0,1 0,10% 0,03% 240 27,62 93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,04% 0,01% 116 30,93 94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	89	0,1	0,11%	0,04%	220	23,86	184	0,0	0,03%	0,01%	126	51,64
91 0,0 0,02% 0,01% 80 43,01 186 0,3 0,35% 0,12% 1038 38,21 92 0,0 0,01% 0,00% 122 100,00 187 0,1 0,10% 0,03% 240 27,62 93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,04% 0,01% 116 30,93 94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	90	0,0	0,02%	0,01%	68	48,92	185	0,0	0,05%	0,02%	160	34,56
92 0,0 0,01% 0,00% 122 100,00 187 0,1 0,10% 0,03% 240 27,62 93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,04% 0,01% 116 30,93 94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	91	0,0	0,02%	0,01%	80	43,01	186	0,3	0,35%	0,12%	1038	38,21
93 0,1 0,06% 0,02% 274 52,59 188 0,0 0,04% 0,01% 116 30,93 94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	92	0,0	0,01%	0,00%	122	100,00	187	0,1	0,10%	0,03%	240	27,62
94 0,0 0,03% 0,01% 112 50,00 189 2,3 2,75% 0,92% 1200 5,60 95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	93	0,1	0,06%	0,02%	274	52,59	188	0,0	0,04%	0,01%	116	30,93
95 0,0 0,03% 0,01% 144 63,72 Media: 0,4 33,57% 7 16,63	94	0,0	0,03%	0,01%	112	50,00	189	2,3	2,75%	0,92%	1200	5,60
	95	0,0	0,03%	0,01%	144	63,72	Media:	0,4		33,57%	7	16,63

Indici geometrici dei patch del paesaggio di Viterbo

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,54	1,29%	0,21%	824	15,25	76	0,03	0,06%	0,01%	94	36,58
2	0,05	0,12%	0,02%	194	38,80	77	0,04	0,09%	0,01%	186	50,54
3	0,03	0,07%	0,01%	80	26,23	78	0,03	0,07%	0,01%	110	37,67
4	0,09	0,21%	0,03%	298	34,77	79	0,05	0,11%	0,02%	160	35,32
5	0,02	0,05%	0,01%	106	53,54	80	0,03	0,08%	0,01%	128	38,91
6	0,07	0,18%	0,03%	150	20,35	81	0,09	0,22%	0,04%	422	46,02
7	0,04	0,10%	0,02%	200	48,54	82	4,70	11,26%	1,85%	5133	17,72
8	0,07	0,16%	0,03%	198	29,33	83	0,02	0,06%	0,01%	150	61,73
9	0,03	0,08%	0,01%	86	27,13	84	0,03	0,06%	0,01%	96	38,40
10	0,22	0,53%	0,09%	532	23,87	85	0,66	1,57%	0,26%	2044	35,65
11	0,21	0,49%	0,08%	422	23,98	86	0,12	0,28%	0,05%	348	29,62
12	0,04	0,11%	0,02%	218	48,55	87	0,03	0,06%	0,01%	194	75,19
13	0,11	0,27%	0,04%	290	25,73	88	0,03	0,07%	0,01%	118	41,70
14	0,36	0,86%	0,14%	484	13,43	89	0,13	0,32%	0,05%	336	25,47
15	0,05	0,11%	0,02%	112	23,78	90	0,18	0,43%	0,07%	452	25,10
16	0,03	0,07%	0,01%	118	37,82	91	0,06	0,15%	0,02%	150	23,77
17	0,07	0,17%	0,03%	334	46,20	92	0,06	0,14%	0,02%	398	69,22
18	0,04	0,09%	0,02%	160	40,40	93	0,25	0,59%	0,10%	1132	45,77
19	0,11	0,27%	0,04%	316	28,06	94	0,02	0,04%	0,01%	76	49,67
20	0,18	0,43%	0,07%	226	12,50	95	0,03	0,06%	0,01%	104	41,11
21	0,30	0,71%	0,12%	918	35,22	96	0,05	0,12%	0,02%	214	41,80
22	0,49	1,17%	0,19%	786	16,03	97	0,04	0,10%	0,02%	208	51,61
23	0,16	0,39%	0,06%	358	22,11	98	0,07	0,18%	0,03%	132	18,01

24	0,02	0,06%	0,01%	120	48,98	99	0,04	0,11%	0,02%	222	49,55
25	0,14	0,33%	0,05%	488	34,98	100	0,05	0,12%	0,02%	172	46,49
26	0,07	0,16%	0,03%	242	37,23	101	0,08	0,18%	0,03%	376	49,34
27	4,84	11,60%	1,91%	5115	17,90	102	0,12	0,28%	0,05%	300	25,23
28	0,59	1,42%	0,23%	1310	25,59	103	0,04	0,09%	0,02%	300	77,52
29	0,75	1,80%	0,30%	1864	26,37	104	0,07	0,16%	0,03%	536	81,21
30	0,05	0,12%	0,02%	348	69,32	105	0,03	0,07%	0,01%	78	28,47
31	0,03	0,07%	0,01%	172	55,13	106	0,03	0,07%	0,01%	118	38,06
32	0,04	0,09%	0,01%	172	47,91	107	0,03	0,06%	0,01%	120	44,78
33	0,11	0,26%	0,04%	258	24,20	108	0,04	0,10%	0,02%	102	25,63
34	0,19	0,45%	0,07%	313	16,68	109	0,03	0,07%	0,01%	314	100,90
35	0,33	0,79%	0,13%	702	21,16	110	0,05	0,12%	0,02%	350	70,14
36	0,05	0,11%	0,02%	272	60,44	111	0,22	0,52%	0,08%	210	9,73
37	0,02	0,06%	0,01%	150	61,48	112	0,04	0,09%	0,01%	172	46,74
38	0,11	0,26%	0,04%	298	27,26	113	0,19	0,46%	0,08%	514	26,67
39	0,05	0,12%	0,02%	248	47,60	114	2,07	4,96%	0,82%	3807	22,88
40	0,04	0,09%	0,01%	100	26,67	115	0,04	0,08%	0,01%	126	35,59
41	0,04	0,11%	0,02%	184	41,91	116	0,33	0,80%	0,13%	1198	35,89
42	0,19	0,46%	0,08%	856	44,08	117	0,04	0,09%	0,02%	216	54,55
43	0,02	0,04%	0,01%	146	78,92	118	0,03	0,07%	0,01%	100	34,97
44	0,18	0,42%	0,07%	566	32,01	119	2,91	6,98%	1,15%	4911	24,25
45	0,03	0,08%	0,01%	164	47,95	120	0,15	0,36%	0,06%	712	47,44
46	0,04	0,09%	0,02%	130	33,51	121	0,37	0,88%	0,14%	2081	29,55
47	0,08	0,19%	0,03%	382	47,22	122	0,04	0,10%	0,02%	264	60,97
48	0,08	0,19%	0,03%	232	29,11	123	0,12	0,29%	0,05%	472	39,46
49	0,46	1,11%	0,18%	1778	38,47	124	0,04	0,08%	0,01%	144	40,79
50	0,03	0,07%	0,01%	120	43,64	125	0,31	0,73%	0,12%	1110	39,26
51	0,04	0,08%	0,01%	202	57,22	126	0,18	0,43%	0,07%	518	28,54
52	0,13	0,31%	0,05%	378	28,90	127	0,03	0,06%	0,01%	98	38,43
53	0,20	0,48%	0,08%	760	44,80	128	0,31	0,75%	0,12%	624	20,01
54	0,06	0,14%	0,02%	140	24,48	129	0,05	0,12%	0,02%	218	42,41
55	0,04	0,10%	0,02%	202	49,88	130	0,11	0,27%	0,05%	380	33,19
56	2,36	5,65%	0,93%	4245	20,27	131	0,08	0,20%	0,03%	450	53,32
57	0,47	1,12%	0,18%	1468	31,29	132	0,72	1,72%	0,28%	1638	22,74
58	0,10	0,23%	0,04%	506	52,44	133	0,65	1,57%	0,26%	1388	23,85
59	0,98	2,34%	0,38%	1652	16,93	134	0,07	0,17%	0,03%	174	24,17
60	0,03	0,06%	0,01%	184	73,60	135	0,11	0,27%	0,04%	366	32,74
61	0,08	0,19%	0,03%	554	69,69	136	0,27	0,64%	0,11%	508	18,91
62	0,20	0,48%	0,08%	460	22,99	137	0,04	0,09%	0,02%	240	61,70
63	0,17	0,41%	0,07%	798	46,34	138	0,10	0,24%	0,04%	174	17,65
64	4,05	9,71%	1,60%	4596	12,62	139	0,12	0,28%	0,05%	300	25,73
65	0,03	0,06%	0,01%	174	64,93	140	0,02	0,06%	0,01%	122	50,21
66	0,06	0,14%	0,02%	186	32,35	141	0,05	0,12%	0,02%	140	28,34
67	0,03	0,07%	0,01%	88	31,43	142	0,11	0,27%	0,04%	338	29,99
68	0,04	0,10%	0,02%	224	51,14	143	0,16	0,39%	0,06%	428	26,18
69	0,03	0,07%	0,01%	136	47,22	144	2,54	6,08%	1,00%	4395	19,40
70	0,03	0,07%	0,01%	100	33,67	145	0,22	0,54%	0,09%	374	16,72

71	0,03	0,06%	0,01%	86	32,09	146	0,11	0,26%	0,04%	414	37,53
72	0,04	0,09%	0,02%	114	29,53	147	0,03	0,07%	0,01%	126	44,37
73	0,13	0,31%	0,05%	358	27,95	148	0,02	0,04%	0,01%	56	37,33
74	0,08	0,20%	0,03%	254	30,57	149	0,06	0,14%	0,02%	198	33,50
75	0,08	0,20%	0,03%	292	34,43	Media:	0,28		16,43%	7	23,72

Indici geometrici dei patch del paesaggio della Sabina

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,06	0,12%	0,02%	186	31,63	33	0,13	0,27%	0,05%	520	39,45
2	0,01	0,03%	0,01%	106	73,61	34	7,44	15,19%	2,92%	6900	10,87
3	0,17	0,34%	0,07%	396	23,77	35	0,19	0,39%	0,08%	774	40,46
4	0,14	0,29%	0,06%	312	21,61	36	0,03	0,06%	0,01%	134	42,54
5	0,13	0,27%	0,05%	282	21,20	37	0,14	0,28%	0,05%	500	36,95
6	0,09	0,18%	0,03%	342	39,86	38	0,17	0,35%	0,07%	802	47,09
7	0,64	1,31%	0,25%	1362	22,65	39	0,68	1,38%	0,27%	1854	28,96
8	0,06	0,13%	0,02%	142	22,36	40	0,07	0,14%	0,03%	174	24,75
9	0,12	0,25%	0,05%	298	23,97	41	0,17	0,35%	0,07%	814	47,85
10	0,09	0,18%	0,03%	230	26,26	42	0,03	0,06%	0,01%	152	50,17
11	0,09	0,19%	0,04%	404	43,87	43	1,79	3,65%	0,70%	4300	30,33
12	0,07	0,15%	0,03%	216	28,95	44	0,19	0,39%	0,07%	774	40,52
13	0,09	0,19%	0,04%	276	30,23	45	0,08	0,16%	0,03%	382	48,57
14	0,05	0,10%	0,02%	136	27,93	46	0,02	0,03%	0,01%	88	57,14
15	0,14	0,30%	0,06%	422	29,12	47	0,33	0,67%	0,13%	872	26,50
16	0,56	1,13%	0,22%	1522	30,43	48	0,16	0,33%	0,06%	472	35,51
17	0,10	0,21%	0,04%	312	30,41	49	0,07	0,15%	0,03%	280	39,05
18	0,07	0,15%	0,03%	232	31,96	50	2,23	4,56%	0,88%	3975	22,17
19	0,15	0,31%	0,06%	428	28,07	51	0,07	0,14%	0,03%	346	49,71
20	0,12	0,24%	0,05%	420	36,46	52	0,09	0,19%	0,04%	432	46,50
21	15,52	31,68%	6,09%	9819	12,51	53	0,16	0,32%	0,06%	416	26,51
22	0,08	0,16%	0,03%	258	33,90	54	0,88	1,80%	0,35%	2544	28,84
23	0,11	0,22%	0,04%	354	33,15	55	0,08	0,16%	0,03%	416	53,61
24	0,41	0,84%	0,16%	834	20,28	56	0,07	0,15%	0,03%	332	44,44
25	1,09	2,22%	0,43%	2390	24,64	57	0,34	0,69%	0,13%	928	27,34
26	1,74	3,55%	0,68%	4486	29,62	58	0,08	0,17%	0,03%	382	46,19
27	0,33	0,68%	0,13%	412	12,34	59	0,11	0,22%	0,04%	362	39,41
28	0,08	0,17%	0,03%	392	46,67	60	8,06	16,46%	3,16%	6141	11,34
29	0,92	1,89%	0,36%	1246	13,47	61	0,08	0,16%	0,03%	240	29,85
30	0,33	0,68%	0,13%	530	15,88	62	1,04	2,13%	0,41%	3818	36,56
31	0,23	0,47%	0,09%	1460	63,34	63	0,03	0,05%	0,01%	96	35,69
32	0,15	0,31%	0,06%	1048	69,82	Media:	0,78		19,23%	14	18,14

APPENDICE G

Valori medi (Media) di abbondanza della metapopolazione ad ogni intervallo temporale, abbondanze corrispondenti a ± 1 di deviazione standard (S.D.) e abbondanze minime (Min.) e massime (Max.) di tutte le repliche per i tre paesaggi negli scenari di non cambiamento dell'habitat. Alla fine delle tabelle sono riportati i valori percentili delle abbondanze medie totali delle metapopolazioni alla fine del periodo di tempo della simulazione.

Tempo	Abbondanza					Tempo	Abbondanza				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	4075	4075,0	4075	4075,0	4075	27	1033	1531,8	2195	2858,2	4701
1	2806	3560,2	4168	4775,8	5826	28	883	1520,8	2141	2761,2	4330
2	2784	3431,3	4167	4902,7	6315	29	717	1494,3	2115	2735,7	3758
3	2458	3238,9	4034	4829,1	6900	30	742	1509,8	2103	2696,2	3951
4	2405	3035,8	3906	4776,2	6271	31	781	1445,0	2080	2715,0	4423
5	2213	2945,7	3839	4732,3	6686	32	858	1429,4	2064	2698,6	4007
6	2239	2860,3	3655	4449,7	7125	33	848	1497,7	2066	2634,3	3606
7	1946	2691,3	3544	4396,7	7807	34	928	1498,7	2085	2671,3	3751
8	1929	2526,9	3370	4213,1	8420	35	793	1413,0	2026	2639,0	3887
9	1784	2516,2	3298	4079,8	6760	36	782	1378,6	1973	2567,4	4191
10	1729	2436,2	3176	3915,8	5132	37	795	1356,9	1994	2631,1	4042
11	1614	2338,8	3047	3755,2	4776	38	811	1296,7	2014	2731,3	4476
12	1634	2287,1	2963	3638,9	4548	39	804	1266,1	1958	2649,9	5047
13	1631	2060,8	2960	3859,2	7783	40	759	1287,7	1949	2610,3	4528
14	1505	2072,2	2816	3559,8	5393	41	725	1243,1	1973	2702,9	5076
15	1422	1986,9	2770	3553,1	5530	42	812	1301,8	1939	2576,2	3968
16	1471	1853,9	2706	3558,1	6972	43	693	1224,0	1917	2610,0	4788
17	1382	1950,1	2618	3285,9	4375	44	642	1275,3	1913	2550,7	4421
18	1256	1881,4	2523	3164,6	4566	45	728	1245,5	1916	2586,5	4301
19	1186	1820,9	2497	3173,1	5704	46	790	1227,1	1896	2564,9	4074
20	1273	1788,3	2438	3087,7	4843	47	838	1201,8	1834	2466,2	3507
21	1200	1768,7	2367	2965,3	4140	48	840	1195,6	1842	2488,4	3957
22	1143	1713,4	2283	2852,6	3613	49	858	1111,0	1832	2553,0	4385
23	968	1617,2	2248	2878,8	4411	50	785	1172,3	1830	2487,7	3810
24	1021	1562,6	2206	2849,4	4343						
25	1081	1519,0	2263	3007,0	5204	04 Percentili dell'abbondanza media totale finale					inale
26	1059	1515,4	2256	2996,6	5278		5th	25th	50th	75th	95th
						50,0	952,4	952,4 1320,3 1811,0 2144,8 303			

Abbondanze della metapopolazione nel tempo per il paesaggio del Lamone

Tempo	Abbondanza					Tempo			Abbonda	inza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	1987	1987,0	1987	1987,0	1987	27	804	1112,1	1499	1885,9	2670
1	1786	1914,4	2069	2223,6	2480	28	753	1087,2	1505	1922,8	3251
2	1725	1906,0	2147	2388,0	3197	29	752	1078,0	1478	1878,0	2816
3	1616	1864,4	2174	2483,6	3559	30	706	1054,9	1440	1825,1	2737
4	1576	1831,0	2180	2529,0	3522	31	761	1051,2	1446	1840,8	3068
5	1479	1751,8	2139	2526,2	3643	32	753	1030,3	1401	1771,7	2761
6	1377	1711,7	2080	2448,3	3269	33	743	1003,3	1380	1756,7	2600
7	1325	1630,6	2051	2471,4	3258	34	717	996,7	1360	1723,3	2425
8	1160	1576,9	1987	2397,1	3027	35	705	997,0	1357	1717,0	2465
9	1162	1534,8	1964	2393,2	3161	36	673	974,9	1370	1765,1	2603
10	1096	1500,1	1932	2363,9	3093	37	695	955,8	1400	1844,2	2790
11	1100	1444,6	1863	2281,4	2858	38	653	973,2	1394	1814,8	3021
12	1090	1407,8	1823	2238,2	3009	39	741	964,2	1380	1795,8	2583
13	1045	1337,1	1794	2250,9	3176	40	667	953,3	1403	1852,7	2684
14	909	1325,6	1738	2150,4	2944	41	669	931,0	1350	1769,0	2699
15	917	1307,3	1716	2124,7	3312	42	604	914,6	1341	1767,4	2757
16	905	1263,8	1665	2066,2	2911	43	632	937,0	1322	1707,0	2322
17	909	1255,1	1638	2020,9	2631	44	563	919,2	1312	1704,8	2494
18	875	1240,9	1626	2011,1	2593	45	495	935,7	1333	1730,3	2377
19	819	1191,3	1625	2058,7	3099	46	471	910,4	1317	1723,6	2678
20	803	1216,9	1609	2001,1	2665	47	458	885,7	1298	1710,3	2845
21	798	1202,5	1579	1955,5	2658	48	520	917,2	1330	1742,8	3110
22	816	1183,2	1567	1950,8	2826	49	468	915,2	1329	1742,8	2956
23	810	1160,7	1568	1975,3	3089	50	469	926,2	1331	1735,8	2674
24	801	1139,9	1575	2010,1	2876						
25	757	1139,6	1544	1948,4	2613	13 Percentili dell'abbondanza media totale finale					nale
26	848	1141,5	1534	1926,5	2585		5th	25th	50th	75th	95th
	040 1141,J 1JJ4 1J20,J 2.					50,00	747,75	1052,50	1257,50	1565,00	2049,50

Abbondanze della metapopolazione nel tempo per il paesaggio di Viterbo

Tempo	Abbondanza					Tempo			Abbonda	inza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	2337	2337,0	2337	2337,0	2337	27	640	1135,3	1752	2368,7	3367
1	1788	2003,4	2359	2714,6	3566	28	595	1065,5	1760	2454,5	4158
2	1585	1960,2	2399	2837,8	3685	29	620	1104,3	1742	2379,7	3414
3	1494	1850,8	2440	3029,2	4617	30	609	1031,5	1744	2456,5	5327
4	1393	1798,4	2455	3111,6	4344	31	582	1084,6	1683	2281,4	3714
5	1249	1686,6	2434	3181,4	5372	32	542	1067,4	1640	2212,6	3287
6	1125	1540,5	2397	3253,5	6145	33	552	1002,1	1635	2267,9	4338
7	1128	1526,8	2389	3251,2	5292	34	538	1020,4	1653	2285,6	4129
8	1002	1527,5	2295	3062,5	4813	35	622	1006,0	1626	2246,0	4071
9	975	1521,4	2286	3050,6	4279	36	636	961,2	1622	2282,8	4486
10	834	1321,1	2314	3306,9	8235	37	539	912,1	1657	2401,9	4862
11	808	1419,4	2232	3044,6	5001	38	532	878,7	1707	2535,3	5097
12	763	1439,4	2208	2976,6	4369	39	575	890,1	1715	2539,9	5213
13	925	1337,9	2124	2910,1	6112	40	604	921,9	1748	2574,1	4336
14	827	1377,6	2087	2796,4	4229	41	566	901,3	1700	2498,7	4681
15	762	1282,1	2102	2921,9	5332	42	539	967,2	1700	2432,8	4103
16	718	1302,9	2025	2747,1	4065	43	592	951,8	1690	2428,2	3934
17	862	1208,1	1975	2741,9	5392	44	680	897,4	1697	2496,6	6063
18	787	1216,2	1963	2709,8	4654	45	630	782,6	1726	2669,4	8419
19	678	1239,2	1948	2656,8	4055	46	558	938,9	1590	2241,1	4681
20	764	1219,9	1912	2604,1	3848	47	540	917,3	1597	2276,7	4049
21	725	1189,8	1900	2610,2	3916	48	600	877,1	1604	2330,9	4187
22	763	1212,6	1850	2487,4	3644	49	640	898,1	1588	2277,9	4377
23	904	1226,6	1854	2481,4	3356	50	560	915,3	1569	2222,7	3730
24	700	1144,4	1828	2511,6	4148						
25	571	1118,4	1844	2569,6	4373	73 Percentili dell'abbondanza media totale finale					nale
26	669	1144,3	1825	2505,7	3898		5th	25th	50th	75th	95th
	669 1144,3 1825 2505,7 3					50,00	694,45	1129,00	1506,00	1822,50	2704,85

Abbondanze della metapopolazione nel tempo per il paesaggio della Sabina

APPENDICE H

Occupancy della metapopolazione: numero delle popolazioni presenti (numero medio dei patch occupati) ad ogni intervallo temporale dei tre paesaggi nello scenario di non cambiamento dell'habitat. Nelle tabelle sono riportati il numero medio (Media), i numeri corrispondenti a ± 1 di deviazione standard (S.D.) e numero minimo (Min.) e massimo (Max.) delle popolazioni presenti di tutte le repliche ad ogni intervallo temporale.

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	189	189,0	189,0	189,0	189	26	101	123,8	138,3	152,8	166
1	163	170,1	174,4	178,7	184	27	98	123,3	137,6	151,9	168
2	155	167,7	172,7	177,7	182	28	98	120,9	135,9	150,9	170
3	156	166,3	171,6	176,9	183	29	96	119,4	134,8	150,2	172
4	156	165,0	170,8	176,6	183	30	95	117,7	133,6	149,5	167
5	154	163,2	169,6	176,0	183	31	86	116,3	132,9	149,5	169
6	144	161,2	168,3	175,4	187	32	85	115,2	131,4	147,6	165
7	142	158,6	166,5	174,4	187	33	82	115,3	131,3	147,4	163
8	147	157,5	165,2	172,9	187	34	70	115,2	131,5	147,8	164
9	141	155,8	164,0	172,2	185	35	78	113,7	130,4	147,1	164
10	141	153,1	162,6	172,1	185	36	82	111,6	128,7	145,7	166
11	133	150,8	161,2	171,6	179	37	84	110,3	127,5	144,7	164
12	129	150,0	160,7	171,3	177	38	83	108,9	126,4	144,0	177
13	126	147,7	158,5	169,3	174	39	85	108,5	125,9	143,3	174
14	130	146,1	157,0	167,9	177	40	80	108,0	125,4	142,8	168
15	121	143,4	154,7	166,0	178	41	78	106,8	124,6	142,4	171
16	118	141,8	153,4	164,9	176	42	74	106,1	124,2	142,3	165
17	126	141,0	152,0	163,0	175	43	70	105,8	124,3	142,8	164
18	122	139,6	151,1	162,6	178	44	67	105,1	124,0	142,9	166
19	116	136,6	148,9	161,2	178	45	68	104,9	123,9	143,0	162
20	112	133,9	146,9	159,9	177	46	69	104,1	123,9	143,8	167
21	106	131,9	145,3	158,7	176	47	69	103,1	122,8	142,5	165
22	106	130,2	143,7	157,2	176	48	69	101,7	122,1	142,5	168
23	100	126,8	141,8	156,8	172	49	67	100,3	121,5	142,8	164
24	102	126,3	140,5	154,7	169	50	64	100,0	121,5	143,0	165
25	102	125,4	139,4	153,3	167						

Occupancy della metapopolazione nel paesaggio del Lamone

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	149	149,0	149,0	149,0	149	26	66	81,3	91,3	101,4	110
1	126	132,1	135,5	138,9	143	27	60	80,8	90,7	100,5	112
2	118	125,5	129,6	133,7	139	28	58	79,7	89,9	100,2	110
3	114	121,3	125,3	129,3	134	29	59	78,5	88,9	99,3	113
4	107	117,3	122,3	127,3	133	30	59	77,4	87,8	98,1	112
5	102	114,2	119,7	125,2	133	31	60	76,2	86,4	96,6	110
6	102	111,2	117,4	123,6	133	32	60	75,8	86,2	96,6	108
7	98	109,3	115,3	121,3	128	33	63	74,8	85,4	96,1	112
8	95	107,5	113,9	120,3	127	34	64	74,9	85,5	96,1	111
9	88	105,1	111,6	118,1	125	35	58	74,0	85,0	96,0	113
10	83	102,8	109,9	117,0	127	36	56	73,0	84,4	95,8	115
11	83	101,7	108,9	116,1	129	37	53	72,6	83,3	94,0	111
12	86	99,9	107,4	114,9	127	38	53	71,5	82,6	93,7	116
13	83	98,2	106,1	114,0	126	39	53	71,2	82,3	93,4	116
14	81	96,1	104,1	112,2	121	40	55	70,5	81,9	93,2	112
15	83	94,4	102,7	110,9	119	41	50	69,4	81,3	93,2	113
16	81	93,2	101,3	109,4	119	42	51	69,0	80,8	92,5	114
17	75	91,3	99,9	108,5	121	43	51	68,5	80,1	91,7	115
18	75	90,4	99,1	107,9	120	44	52	68,2	79,6	91,1	117
19	69	88,8	97,8	106,9	122	45	54	67,9	79,3	90,6	112
20	68	87,2	96,5	105,8	120	46	52	67,3	78,6	89,8	110
21	69	85,9	95,4	104,8	120	47	47	66,1	78,0	90,0	107
22	70	84,8	94,2	103,5	116	48	50	67,6	79,3	90,9	110
23	68	83,9	93,4	102,9	116	49	50	67,2	78,3	89,4	106
24	63	82,9	92,7	102,4	116	50	46	67,0	77,8	88,6	104
25	64	82,7	92,5	102,2	113						

Occupancy della metapopolazione nel paesaggio di Viterbo
Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	63	63,0	63,0	63,0	63	26	35	41,8	46,7	51,6	59
1	57	60,4	61,6	62,9	63	27	34	41,8	46,8	51,8	60
2	55	58,5	60,2	62,0	63	28	31	41,4	46,4	51,5	60
3	52	56,5	58,8	61,1	63	29	33	41,2	46,0	50,9	58
4	52	55,6	57,6	59,7	62	30	33	40,8	45,7	50,6	59
5	51	54,2	56,3	58,5	60	31	31	40,9	45,8	50,6	59
6	49	52,9	55,4	57,9	61	32	31	40,4	45,5	50,6	58
7	45	51,7	54,6	57,5	61	33	31	40,3	45,2	50,1	57
8	45	51,3	54,3	57,3	62	34	30	40,4	45,1	49,7	55
9	45	50,5	53,5	56,5	60	35	31	39,9	44,7	49,6	56
10	43	49,4	52,9	56,3	60	36	32	39,8	44,5	49,2	56
11	41	48,6	52,1	55,6	59	37	31	39,7	44,4	49,0	57
12	39	48,5	51,9	55,3	60	38	29	39,1	44,2	49,2	59
13	40	48,3	51,7	55,0	59	39	29	38,8	43,9	49,0	58
14	39	47,6	51,1	54,7	61	40	27	38,8	44,1	49,3	58
15	41	47,0	50,7	54,3	58	41	24	38,7	44,0	49,3	56
16	39	46,4	50,3	54,2	59	42	27	38,9	43,8	48,7	55
17	37	46,0	50,2	54,4	57	43	28	38,7	43,7	48,7	55
18	36	45,3	49,6	53,9	58	44	29	38,7	43,8	48,8	55
19	36	44,7	49,0	53,2	58	45	28	38,5	43,4	48,3	54
20	36	44,4	48,7	53,0	58	46	26	38,3	43,3	48,3	54
21	37	43,9	48,5	53,1	60	47	27	38,3	43,2	48,1	53
22	38	43,8	48,3	52,9	59	48	29	38,1	42,9	47,6	53
23	35	43,3	48,1	52,9	60	49	28	37,8	42,8	47,7	53
24	37	43,4	48,0	52,6	60	50	28	37,7	42,6	47,5	53
25	36	42,9	47,4	52,0	58						

Occupancy della metapopolazione nel paesaggio della Sabina

APPENDICE I

Mappa delle metapopolazioni di inizio simulazione negli scenari di cambiamento dell'habitat per il paesaggio del Lamone. I cerchi rappresentano le popolazioni con un diametro proporzionale alla carrying capacity. Le linee che uniscono le popolazioni indicano dispersione tra le due popolazioni.

Mappa delle metapopolazioni con la perdita del 25% di habitat per il paesaggio del Lamone

Mappa delle metapopolazioni con la perdita del 50% di habitat per il paesaggio del Lamone

Mappa delle metapopolazioni con la frammentazione del 25% di habitat per il paesaggio del Lamone

Mappa delle metapopolazioni con la frammentazione del 50% di habitat per il paesaggio del Lamone

APPENDICE J

Valori totali di habitat suitability (Total HS) per ogni patch e valori di carrying capacity (K) e initial abundance (Init. abund.) patch-specifici per il paesaggio del Lamone negli scenari di cambiamento dell'habitat. Alla fine delle tabelle sono riportati i valori totali di questi parametri, relativi a tutto il paesaggio.

Patch	Total	к	Init.	Patch	Total	к	Init.
	HS		abund.		HS		abund.
1	123	1	1	93	521	4	2
2	159	1	1	94	224	2	1
3	154	1	1	95	226	2	1
4	232	2	1	96	891	7	4
5	639	5	3	97	687	6	3
6	1030	8	5	98	252	2	1
7	122	1	1	99	694	6	3
8	230	2	1	100	152	1	1
9	154	1	1	101	343	3	2
10	797	7	4	102	16491	136	79
11	185	2	1	103	137	1	1
12	2856	23	14	104	243	2	1
13	4221	35	20	105	400	3	2
14	137	1	1	106	164	1	1
15	1055	9	5	107	199	2	1
16	637	5	3	108	150	1	1
17	1737	14	8	109	166	1	1
18	138	1	1	110	708	6	3
19	326	3	2	111	541	4	3
20	34557	284	165	112	133	1	1
21	209	2	1	113	184	2	1
22	184	2	1	114	216	2	1
23	461	4	2	115	131269	1080	628
24	29428	242	141	116	435	4	2
25	173	1	1	117	155	1	1
26	238	2	1	118	997	8	5
27	258	2	1	119	10425	86	50
28	4776	39	23	120	139	1	1
29	650	5	3	121	319	3	2
30	364	3	2	122	20344	167	97
31	289	2	1	123	195	2	1
32	395	3	2	124	1296	11	6
33	225	2	1	125	1325	11	6

HS, numerosità (Init. abund.) e carrying capacity (K) nella perdita del 25% di habitat per il paesaggio del Lamone

34	752	6	4	126	23870	196	114	•
35	772	6	4	127	1132	9	5	
36	153	1	1	128	727	6	3	
37	890	7	4	129	545	4	3	
38	276	2	1	130	381	3	2	
39	495	4	2	131	136	1	1	
40	501	4	2	132	237	2	1	
41	1815	15	9	133	173	1	1	
42	210	2	1	134	122	1	1	
43	133	1	1	135	260	2	1	
44	491	4	2	136	1152	9	6	
45	633	5	3	137	122	1	1	
46	192	2	1	138	324	3	2	
47	277	2	1	139	177	1	1	
48	411	3	2	140	462	4	2	
49	434	4	2	141	366	3	2	
50	3733	31	18	142	128	1	1	
51	347	3	2	143	21655	178	104	
52	169	1	1	144	754	6	4	
53	70370	579	337	145	122	1	1	
54	159	1	1	146	348	3	2	
55	152	1	1	147	2423	20	12	
56	19431	160	93	148	856	7	4	
57	7916	65	38	149	356	3	2	
58	171	1	1	150	175	1	1	
59	205	2	1	151	377	3	2	
60	227	2	1	152	181	1	1	
61	800	7	4	153	188	2	1	
62	761	6	4	154	1226	10	6	
63	158	1	1	155	1202	10	6	
64	580	5	3	156	3951	32	19	
65	338	3	2	157	133	1	1	
66	171	1	1	158	431	4	2	
67	226	2	1	159	2325	19	11	
68	183	2	1	160	353	3	2	
69	184	2	1	161	2859	24	14	
70	355	3	2	162	280	2	1	
71	172	1	1	163	383	3	2	
72	151	1	1	164	218	2	1	
73	471	4	2	165	11903	98	57	
74	484	4	2	166	192	2	1	
75	130	1	1	167	1213	10	6	
76	2697	22	13	168	286	2	1	
77	7975	66	38	169	64358	529	308	
	214	2	1	170	2431	20	12	
78	214	-						
78 79	214 2081	17	10	171	207	2	1	

81	314	3	2	173	679	6	3
82	232	2	1	174	3203	26	15
83	174	1	1	175	1920	16	9
84	210	2	1	176	177	1	1
85	10211	84	49	177	848	7	4
86	181	1	1	178	79105	651	379
87	122	1	1	179	1028	8	5
88	744	6	4	180	244	2	1
89	922	8	4	181	463	4	2
90	139	1	1	182	2957	24	14
91	186	2	1	183	869	7	4
92	122	1	1	184	23303	192	112
				SUM:	696725	5727	3348

HS, numerosità (Init. abund.) e carrying capacity (K) nella perdita del 50% di habitat per il paesaggio del Lamone

Patch	Total	к	Init.	Patch	Total	к	Init.
	HS		abund.		HS		abund.
1	123	1	1	90	186	2	1
2	159	1	1	91	122	1	1
3	154	1	1	92	521	4	2
4	232	2	1	93	224	2	1
5	639	5	3	94	226	2	1
6	1030	8	5	95	891	7	4
7	122	1	1	96	687	6	3
8	193	2	1	97	252	2	1
9	154	1	1	98	694	6	3
10	797	7	4	99	152	1	1
11	1708	14	8	100	343	3	2
12	1527	13	7	101	16491	136	79
13	2856	23	14	102	137	1	1
14	4176	34	20	103	243	2	1
15	137	1	1	104	400	3	2
16	1055	9	5	105	164	1	1
17	637	5	3	106	199	2	1
18	138	1	1	107	150	1	1
19	326	3	2	108	166	1	1
20	34557	284	165	109	708	6	3
21	209	2	1	110	541	4	3
22	184	2	1	111	133	1	1
23	461	4	2	112	184	2	1
24	21478	177	103	113	216	2	1
25	173	1	1	114	106087	873	508
26	238	2	1	115	435	4	2

27	258	2	1	116	155	1	1
28	4776	39	23	117	997	8	5
29	364	3	2	118	10425	86	50
30	289	2	1	119	139	1	1
31	225	2	1	120	319	3	2
32	752	6	4	121	20344	167	97
33	772	6	4	122	195	2	1
34	153	1	1	123	1296	11	6
35	890	7	4	124	1325	11	6
36	276	2	1	125	23870	196	114
37	495	4	2	126	1132	9	5
38	357	3	2	127	3989	33	19
39	1815	15	9	128	727	6	3
40	133	1	1	129	545	4	3
41	491	4	2	130	10320	85	49
42	633	5	3	131	381	3	2
43	2452	20	12	132	136	1	1
44	2007	17	10	133	237	2	1
45	478	4	2	134	173	1	1
46	192	2	1	135	122	1	1
47	277	2	1	136	260	2	1
48	411	3	2	137	1152	9	6
49	434	4	2	138	122	1	1
50	3733	31	18	139	324	3	2
51	347	3	2	140	177	1	1
52	169	1	1	141	128	1	1
53	4470	37	21	142	122	1	1
54	159	1	1	143	348	3	2
55	152	1	1	144	856	7	4
56	19431	160	93	145	356	3	2
57	7916	65	38	146	175	1	1
58	171	1	1	147	377	3	2
59	205	2	1	148	181	1	1
60	227	2	1	149	188	2	I
61	800	6	4	150	1220	10	6
62	150	0	4	151	1202	10	0 10
63	120		1	152	2547 122	21	12
65	220	5 2	כ ז	155	122	1	1
66	220	3 7	2	154	431 2225	4	2 11
67	192	2	1	155	1727	19	6
62	12/	∠ ว	1 1	157	300	2	1
60	222	∠ २	- 2	152	2850	∠ 24	1 <i>1</i>
70	172	1	<u>د</u> 1	150	2009	24	1 1
70	151	+ 1	± 1	160	200 4640	2 22	- 22
72	Δ71	1 1	2	161	282	२ २	22
72	484	ч 4	2	162	2900	24	ے 14
	TUT	-	2	102	2500	27	74

74	130	1	1	163	192	2	1
75	2697	22	13	164	50617	416	242
76	7975	66	38	165	2431	20	12
77	214	2	1	166	207	2	1
78	2081	17	10	167	258	2	1
79	8317	68	40	168	172	1	1
80	314	3	2	169	512	4	2
81	232	2	1	170	1920	16	9
82	174	1	1	171	177	1	1
83	210	2	1	172	58108	478	278
84	10211	84	49	173	1028	8	5
85	181	1	1	174	244	2	1
86	122	1	1	175	2957	24	14
87	744	6	4	176	212	2	1
88	922	8	4	177	869	7	4
89	139	1	1	178	23303	192	112
				SUM:	544714	4477	2619

HS, numerosità (Init. abund.) e carrying capacity (K) nella frammentazione del 25% di habitat per il paesaggio del Lamone

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	1323	11	6	119	226	2	1
2	123	1	1	120	891	7	4
3	6794	56	33	121	687	6	3
4	159	1	1	122	14115	116	68
5	187	2	1	123	694	6	3
6	154	1	1	124	152	1	1
7	7052	58	34	125	219	2	1
8	232	2	1	126	2680	22	13
9	639	5	3	127	343	3	2
10	1059	9	5	128	1115	9	5
11	346	3	2	129	137	1	1
12	1030	8	5	130	243	2	1
13	154	1	1	131	400	3	2
14	2230	18	11	132	164	1	1
15	797	7	4	133	199	2	1
16	1770	15	8	134	150	1	1
17	9220	76	44	135	166	1	1
18	1300	11	6	136	285	2	1
19	2856	23	14	137	708	6	3
20	2661	22	13	138	541	4	3
21	415	3	2	139	214	2	1
22	637	5	3	140	133	1	1

23	1737	14	8	141	184	2	1	
24	326	3	2	142	216	2	1	
25	5327	44	26	143	26437	217	127	
26	158	1	1	144	2607	21	12	
27	209	2	1	145	435	4	2	
28	184	2	1	146	155	1	1	
29	461	4	2	147	808	7	4	
30	173	1	1	148	997	8	5	
31	238	2	1	149	6156	51	29	
32	258	2	1	150	139	1	1	
33	4716	39	23	151	319	3	2	
34	22760	187	109	152	18659	153	89	
35	364	3	2	153	1296	11	6	
36	296	2	1	154	1325	11	6	
37	289	2	1	155	21076	173	101	
38	395	3	2	156	1132	9	5	
39	225	2	1	157	1850	15	9	
40	752	6	4	158	727	6	3	
41	772	6	4	159	187	2	1	
42	153	1	1	160	4756	39	23	
43	890	7	4	161	381	3	2	
44	276	2	1	162	522	4	2	
45	495	4	2	163	136	1	1	
46	6802	56	33	164	237	2	1	
47	1800	15	9	165	173	1	1	
48	210	2	1	166	122	1	1	
49	133	1	1	167	260	2	1	
50	491	4	2	168	1152	9	6	
51	633	5	3	169	122	1	1	
52	1197	10	6	170	324	3	2	
53	428	4	2	171	177	1	1	
54	192	2	1	172	128	1	1	
55	277	2	1	173	952	8	5	
56	207	2	1	174	122	1	1	
57	899	7	4	175	1027	8	5	
58	434	4	2	176	348	3	2	
59	3061	25	15	177	856	7	4	
60	3264	27	16	178	208	2	1	
61	347	3	2	179	1492	12	7	
62	169	1	1	180	356	3	2	
63	3008	25	14	181	175	1	1	
64	159	1	1	182	377	3	2	
65	152	1	1	183	637	5	3	
66	1347	11	6	184	181	1	1	
67	4994	41	24	185	782	6	4	
~ ~				400				
68	171	1	1	186	4028	33	19	

70	145	1	1	188	431	4	2	
71	227	2	1	189	2325	19	11	
72	227	2	1	190	214	2	1	
73	821	7	4	191	2859	24	14	
74	800	7	4	192	130	1	1	
75	1733	14	8	193	280	2	1	
76	580	5	3	194	2463	20	12	
77	338	3	2	195	835	7	4	
78	171	1	1	196	1026	8	5	
79	552	5	3	197	380	3	2	
80	183	2	1	198	252	2	1	
81	184	2	1	199	1350	11	6	
82	355	3	2	200	218	2	1	
83	172	1	1	201	5103	42	24	
84	3550	29	17	202	34689	285	166	
85	1561	13	7	203	5248	43	25	
86	469	4	2	204	362	3	2	
87	131	1	1	205	192	2	1	
88	235	2	1	206	1485	12	7	
89	130	1	1	207	1320	11	6	
90	130	1	1	208	286	2	1	
91	255	2	1	209	1238	10	6	
92	206	2	1	210	1748	14	8	
93	2251	19	11	211	655	5	3	
94	584	5	3	212	207	2	1	
95	149	1	1	213	258	2	1	
96	244	2	1	214	679	6	3	
97	1464	12	7	215	129	1	1	
98	214	2	1	216	150	1	1	
99	989	8	5	217	162	1	1	
100	1569	13	8	218	785	6	4	
101	1042	9	5	219	102177	840	489	
102	7751	64	37	220	12833	106	61	
103	314	3	2	221	196	2	1	
104	232	2	1	222	141	1	1	
105	174	1	1	223	1182	10	6	
106	210	2	1	224	367	3	2	
107	5085	42	24	225	177	1	1	
108	196308	1615	940	226	4304	35	21	
109	181	1	1	227	163	1	1	
110	122	1	1	228	762	6	4	
110		6	4	229	495	4	2	
110	744	0		. –				
110 111 112	744 913	8	4	230	463	4	2	
110 111 112 113	744 913 139	8 1	4 1	230 231	463 2879	4 24	2 14	
110 111 112 113 114	744 913 139 186	8 1 2	4 1 1	230 231 232	463 2879 140	4 24 1	2 14 1	
110 111 112 113 114 115	744 913 139 186 122	8 1 2 1	4 1 1	230 231 232 233	463 2879 140 869	4 24 1 7	2 14 1 4	

117	224	2	1	235	132	1	1
118	1935	16	9	236	20479	168	98
_				SUM:	694918	5710	3341

HS, numerosità (Init. abund.) e carrying capacity (K) nella frammentazione del 50% di habitat per il paesaggio del Lamone

Patch	Total	к	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	916	8	4	121	13551	111	65
2	123	1	1	122	671	6	3
3	5483	45	26	123	152	1	1
4	4424	36	21	124	2299	19	11
5	154	1	1	125	335	3	2
6	1886	16	9	126	137	1	1
7	232	2	1	127	243	2	1
8	639	5	3	128	400	3	2
9	248	2	1	129	164	1	1
10	764	6	4	130	199	2	1
11	332	3	2	131	150	1	1
12	1030	8	5	132	166	1	1
13	140	1	1	133	708	6	3
14	154	1	1	134	541	4	3
15	591	5	3	135	133	1	1
16	1629	13	8	136	184	2	1
17	797	7	4	137	216	2	1
18	7798	64	37	138	22258	183	107
19	4098	34	20	139	1783	15	9
20	680	6	3	140	435	4	2
21	2856	23	14	141	155	1	1
22	2477	20	12	142	997	8	5
23	124	1	1	143	5083	42	24
24	157	1	1	144	138	1	1
25	637	5	3	145	319	3	2
26	3002	25	14	146	941	8	5
27	1732	14	8	147	444	4	2
28	326	3	2	148	14996	123	72
29	209	2	1	149	3422	28	16
30	184	2	1	150	280	2	1
31	461	4	2	151	1574	13	8
32	173	1	1	152	1296	11	6
33	238	2	1	153	1325	11	6
34	258	2	1	154	20465	168	98
35	4282	35	21	155	1132	9	5
36	18496	152	89	156	1476	12	7
37	356	3	2	157	727	6	3

38	214	2	1	158	3961	33	19	
39	289	2	1	159	381	3	2	
40	395	3	2	160	136	1	1	
41	225	2	1	161	237	2	1	
42	752	6	4	162	129	1	1	
43	772	6	4	163	122	1	1	
44	153	1	1	164	260	2	1	
45	890	7	4	165	1152	9	6	
46	276	2	1	166	122	1	1	
47	495	4	2	167	324	3	2	
48	6434	53	31	168	177	1	1	
49	1490	12	7	169	611	5	3	
50	210	2	1	170	128	1	1	
51	133	1	1	171	952	8	5	
52	491	4	2	172	122	1	1	
53	633	5	3	173	689	6	3	
54	665	5	3	174	348	3	2	
55	192	2	1	175	856	7	4	
56	277	2	1	176	1238	10	6	
57	176	1	1	177	356	3	2	
58	564	5	3	178	174	1	1	
59	434	4	2	179	175	1	1	
60	2954	24	14	180	377	3	2	
61	3825	31	18	181	336	3	2	
62	917	8	4	182	181	1	1	
63	347	3	2	183	651	5	3	
64	169	1	1	184	408	3	2	
65	2578	21	12	185	4025	33	19	
66	159	1	1	186	133	1	1	
67	152	1	1	187	431	4	2	
68	331	3	2	188	2325	19	11	
69	4464	37	21	189	1786	15	9	
70	171	1	1	190	2859	24	14	
71	205	2	1	191	130	1	1	
72	244	2	1	192	2260	19	11	
73	227	2	1	193	280	2	1	
74	510	4	2	194	532	4	3	
75	800	7	4	195	242	2	1	
76	153	1	1	196	564	5	3	
77	230	2	1	197	22302	183	107	
78	1338	11	6	198	233	2	1	
79	2439	20	12	199	1102	9	5	
80	290	2	1	200	218	2	1	
81	140	1	1	201	4508	37	22	
82	447	4	2	202	122	1	1	
83	183	2	1	203	54227	446	260	
84	875	/	4	204	440	4	2	

85	184	2	1	205	1711	14	8	
86	355	3	2	206	192	2	1	
87	172	1	1	207	1485	12	7	
88	195	2	1	208	2500	21	12	
89	206	2	1	209	1145	9	5	
90	130	1	1	210	286	2	1	
91	140	1	1	211	1109	9	5	
92	2028	17	10	212	1313	11	6	
93	828	7	4	213	1412	12	7	
94	807	7	4	214	2362	19	11	
95	398	3	2	215	207	2	1	
96	134930	1110	646	216	427	4	2	
97	517	4	2	217	258	2	1	
98	818	7	4	218	679	6	3	
99	7522	62	36	219	129	1	1	
100	314	3	2	220	5876	48	28	
101	232	2	1	221	150	1	1	
102	208	2	1	222	727	6	3	
103	4789	39	23	223	694	6	3	
104	181	1	1	224	293	2	1	
105	122	1	1	225	7914	65	38	
106	273	2	1	226	196	2	1	
107	408	3	2	227	141	1	1	
108	845	7	4	228	255	2	1	
109	437	4	2	229	177	1	1	
110	139	1	1	230	342	3	2	
111	186	2	1	231	495	4	2	
112	122	1	1	232	463	4	2	
113	374	3	2	233	520	4	2	
114	521	4	2	234	1781	15	9	
115	224	2	1	235	1736	14	8	
116	1748	14	8	236	869	7	4	
117	182	1	1	237	375	3	2	
118	226	2	1	238	17879	147	86	
				1				
119	891	7	4	239	472	4	2	

APPENDICE K

Indici geometrici dei patch che compongono il paesaggio del Lamone negli scenari di cambiamento dell'habitat: area dei patch (in km²), area dei patch espressa in percentuale rispetto l'estensione di tutti gli altri patch presenti nel paesaggio (Area as % of patches) e rispetto l'estensione totale del paesaggio (Area as % of landsc.), perimetro dei patch (in km; Edge) e rapporto tra il perimetro e l'area di ciascun patch (indice di forma dei patch; Edge:A). Alla fine delle tabelle sono riportati i valori medi delle aree, dei perimetri e dei rapporti tra i perimetri e le aree dei patch che compongono il paesaggio.

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,01	0,02%	0,00%	80	65,04	93	0,05	0,07%	0,02%	274	52,59
2	0,02	0,02%	0,01%	96	60,38	94	0,02	0,03%	0,01%	112	50,00
3	0,02	0,02%	0,01%	102	66,23	95	0,02	0,03%	0,01%	144	63,72
4	0,02	0,03%	0,01%	160	68,97	96	0,09	0,13%	0,04%	320	35,91
5	0,06	0,09%	0,03%	182	28,48	97	0,07	0,10%	0,03%	434	63,17
6	0,10	0,15%	0,04%	390	37,86	98	0,03	0,04%	0,01%	100	39,68
7	0,01	0,02%	0,00%	324	90,16	99	0,07	0,10%	0,03%	422	60,81
8	0,02	0,03%	0,01%	224	97,39	100	0,02	0,02%	0,01%	92	60,53
9	0,02	0,02%	0,01%	96	62,34	101	0,03	0,05%	0,01%	176	51,31
10	0,08	0,11%	0,03%	162	20,33	102	1,65	2,37%	0,65%	3554	27,64
11	0,02	0,03%	0,01%	142	76,76	103	0,01	0,02%	0,01%	108	78,83
12	0,29	0,41%	0,11%	726	25,42	104	0,02	0,03%	0,01%	132	54,32
13	0,42	0,61%	0,17%	964	27,06	105	0,04	0,06%	0,02%	401	40,00
14	0,01	0,02%	0,01%	104	75,91	106	0,02	0,02%	0,01%	66	40,24
15	0,11	0,15%	0,04%	196	18,58	107	0,02	0,03%	0,01%	142	71,36
16	0,06	0,09%	0,03%	220	34,54	108	0,02	0,02%	0,01%	114	76,00
17	0,17	0,25%	0,07%	710	40,88	109	0,02	0,02%	0,01%	154	92,77
18	0,01	0,02%	0,01%	98	71,01	110	0,07	0,10%	0,03%	180	25,42
19	0,03	0,05%	0,01%	148	45,4	111	0,05	0,08%	0,02%	328	60,63
20	3,46	4,96%	1,36%	5451	16,7	112	0,01	0,02%	0,01%	102	76,69
21	0,02	0,03%	0,01%	114	54,55	113	0,02	0,03%	0,01%	122	66,30
22	0,02	0,03%	0,01%	86	46,74	114	0,02	0,03%	0,01%	208	96,30
23	0,05	0,07%	0,02%	671	51,19	115	13,13	18,84%	5,17%	8187	7,89
24	2,94	4,22%	1,16%	3693	19,9	116	0,04	0,06%	0,02%	328	75,40
25	0,02	0,02%	0,01%	102	58,96	117	0,02	0,02%	0,01%	74	47,74
26	0,02	0,03%	0,01%	124	52,1	118	0,10	0,14%	0,04%	490	49,15
27	0,03	0,04%	0,01%	98	37,98	119	1,04	1,50%	0,41%	2408	26,49
28	0,48	0,69%	0,19%	996	23,87	120	0,01	0,02%	0,01%	82	58,99
29	0,07	0,09%	0,03%	444	68,31	121	0,03	0,05%	0,01%	122	38,24
30	0,04	0,05%	0,01%	220	60,44	122	2,03	2,92%	0,80%	4184	20,93
31	0,03	0,04%	0,01%	186	64,36	123	0,02	0,03%	0,01%	106	54,36

Indici geometrici dei patch nella perdita del 25% di habitat per il paesaggio del Lamone

32	0,04	0,06%	0,02%	236	59,75	124	0,13	0,19%	0,05%	562	43,36
33	0,02	0,03%	0,01%	401	64,89	125	0,13	0,19%	0,05%	410	30,94
34	0,08	0,11%	0,03%	400	53,19	126	2,39	3,43%	0,94%	7634	33,50
35	0,08	0,11%	0,03%	248	32,12	127	0,11	0,16%	0,04%	572	50,53
36	0,02	0,02%	0,01%	160	104,5	128	0,07	0,10%	0,03%	190	26,13
37	0,09	0,13%	0,04%	506	56,85	129	0,05	0,08%	0,02%	270	49,54
38	0,03	0,04%	0,01%	144	52,17	130	0,04	0,05%	0,01%	220	57,74
39	0,05	0,07%	0,02%	206	41,62	131	0,01	0,02%	0,01%	130	95,59
40	0,05	0,07%	0,02%	298	59,48	132	0,02	0,03%	0,01%	150	63,29
41	0,18	0,26%	0,07%	672	37,02	133	0,02	0,02%	0,01%	106	61,27
42	0,02	0,03%	0,01%	134	63,81	134	0,01	0,02%	0,00%	100	81,97
43	0,01	0,02%	0,01%	86	64,66	135	0,03	0,04%	0,01%	214	82,31
44	0,05	0,07%	0,02%	160	32,59	136	0,12	0,17%	0,05%	614	53,30
45	0,06	0,09%	0,02%	246	38,86	137	0,01	0,02%	0,00%	126	103,20
46	0,02	0,03%	0,01%	148	77,08	138	0,03	0,05%	0,01%	182	56,17
47	0,03	0,04%	0,01%	196	70,76	139	0,02	0,03%	0,01%	134	75,71
48	0,04	0,06%	0,02%	296	72,02	140	0,05	0,07%	0,02%	198	42,86
49	0,04	0,06%	0,02%	232	53,46	141	0,04	0,05%	0,01%	140	38,25
50	0,37	0,54%	0,15%	1630	43,66	142	0,01	0,02%	0,01%	110	85,94
51	0,03	0,05%	0,01%	162	46,69	143	2,17	3,11%	0,85%	3375	18,20
52	0,02	0,02%	0,01%	160	94,67	144	0,08	0,11%	0,03%	350	46,42
53	7,04	10,10%	2,77%	6519	13,67	145	0,01	0,02%	0,00%	72	59,02
54	0,02	0,02%	0,01%	132	83,02	146	0,03	0,05%	0,01%	218	62,64
55	0,02	0,02%	0,01%	76	50	147	0,24	0,35%	0,10%	370	15,27
56	1,94	2,79%	0,76%	3450	18,35	148	0,09	0,12%	0,03%	298	34,81
57	0,79	1,14%	0,31%	1130	14,27	149	0,04	0,05%	0,01%	194	54,49
58	0,02	0,02%	0,01%	104	60,82	150	0,02	0,03%	0,01%	148	84,57
59	0,02	0,03%	0,01%	128	62,44	151	0,04	0,05%	0,01%	152	40,32
60	0,02	0,03%	0,01%	110	48,46	152	0,02	0,03%	0,01%	98	54,14
61	0,08	0,11%	0,03%	252	31,5	153	0,02	0,03%	0,01%	122	64,89
62	0,08	0,11%	0,03%	550	72,27	154	0,12	0,18%	0,05%	214	17,46
63	0,02	0,02%	0,01%	130	82,28	155	0,12	0,17%	0,05%	532	44,26
64	0,06	0,08%	0,02%	138	23,79	156	0,40	0,57%	0,16%	1054	28,65
65	0,03	0,05%	0,01%	144	42,6	157	0,01	0,02%	0,01%	70	52,63
66	0,02	0,02%	0,01%	154	90,06	158	0,04	0,06%	0,02%	134	31,09
67	0,02	0,03%	0,01%	136	60,18	159	0,23	0,33%	0,09%	276	11,87
68	0,02	0,03%	0,01%	116	63,39	160	0,04	0,05%	0,01%	142	40,23
69	0,02	0,03%	0,01%	124	67,39	161	0,29	0,41%	0,11%	748	26,58
70	0,04	0,05%	0,01%	128	36,06	162	0,03	0,04%	0,01%	120	42,86
71	0,02	0,02%	0,01%	116	67,44	163	0,04	0,05%	0,02%	150	39,16
72	0,02	0,02%	0,01%	72	47,68	164	0,02	0,03%	0,01%	114	52,29
73	0,05	0,07%	0,02%	328	69,64	165	1,19	1,71%	0,47%	2820	25,44
74	0,05	0,07%	0,02%	302	62,4	166	0,02	0,03%	0,01%	92	47,92
75	0,01	0,02%	0,01%	78	60	167	0,12	0,17%	0,05%	258	21,27
76	0,27	0,39%	0,11%	834	30,92	168	0,03	0,04%	0,01%	242	84,62
77	0,80	1,14%	0,31%	2332	31,62	169	6,44	9,24%	2,53%	8523	19,40
78	0,02	0,03%	0,01%	150	70,09	170	0,24	0,35%	0,10%	632	26,00

79	0,21	0,30%	0,08%	732	35,18	171	0,02	0,03%	0,01%	376	65,70
80	0,92	1,32%	0,36%	3672	33,32	172	0,03	0,04%	0,01%	152	58,91
81	0,03	0,05%	0,01%	198	63,06	173	0,07	0,10%	0,03%	198	29,16
82	0,02	0,03%	0,01%	182	78,45	174	0,32	0,46%	0,13%	840	26,23
83	0,02	0,02%	0,01%	160	91,95	175	0,19	0,28%	0,08%	408	21,25
84	0,02	0,03%	0,01%	419	70,48	176	0,02	0,03%	0,01%	70	39,55
85	1,02	1,47%	0,40%	1918	20,74	177	0,08	0,12%	0,03%	214	25,24
86	0,02	0,03%	0,01%	120	66,3	178	7,91	11,35%	3,11%	4454	6,40
87	0,01	0,02%	0,00%	76	62,3	179	0,10	0,15%	0,04%	290	28,21
88	0,07	0,11%	0,03%	322	43,28	180	0,02	0,04%	0,01%	126	51,64
89	0,09	0,13%	0,04%	220	23,86	181	0,05	0,07%	0,02%	160	34,56
90	0,01	0,02%	0,01%	68	48,92	182	0,30	0,42%	0,12%	1040	38,28
91	0,02	0,03%	0,01%	80	43,01	183	0,09	0,12%	0,03%	240	27,62
92	0,01	0,02%	0,00%	122	100	184	2,33	3,34%	0,92%	1200	5,60
						Media:	0,38		27,58%	7	18,77

Indici geometrici dei patch nella perdita del 50% di habitat per il paesaggio del Lamone

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,01	0,02%	0,00%	80	65,04	90	0,02	0,03%	0,01%	80	43,01
2	0,02	0,03%	0,01%	96	60,38	91	0,01	0,02%	0,00%	122	100,00
3	0,02	0,03%	0,01%	102	66,23	92	0,05	0,10%	0,02%	274	52,59
4	0,02	0,04%	0,01%	160	68,97	93	0,02	0,04%	0,01%	112	50,00
5	0,06	0,12%	0,03%	182	28,48	94	0,02	0,04%	0,01%	144	63,72
6	0,10	0,19%	0,04%	390	37,86	95	0,09	0,16%	0,04%	320	35,91
7	0,01	0,02%	0,00%	324	90,16	96	0,07	0,13%	0,03%	434	63,17
8	0,02	0,04%	0,01%	190	98,45	97	0,03	0,05%	0,01%	100	39,68
9	0,02	0,03%	0,01%	96	62,34	98	0,07	0,13%	0,03%	422	60,81
10	0,08	0,15%	0,03%	162	20,33	99	0,02	0,03%	0,01%	92	60,53
11	0,17	0,31%	0,07%	356	20,84	100	0,03	0,06%	0,01%	176	51,31
12	0,15	0,28%	0,06%	806	52,78	101	1,65	3,03%	0,65%	3554	27,64
13	0,29	0,52%	0,11%	726	25,42	102	0,01	0,03%	0,01%	108	78,83
14	0,42	0,77%	0,16%	944	26,87	103	0,02	0,04%	0,01%	132	54,32
15	0,01	0,03%	0,01%	104	75,91	104	0,04	0,07%	0,02%	401	40,00
16	0,11	0,19%	0,04%	196	18,58	105	0,02	0,03%	0,01%	66	40,24
17	0,06	0,12%	0,03%	220	34,54	106	0,02	0,04%	0,01%	142	71,36
18	0,01	0,03%	0,01%	98	71,01	107	0,02	0,03%	0,01%	114	76,00
19	0,03	0,06%	0,01%	148	45,40	108	0,02	0,03%	0,01%	154	92,77
20	3,46	6,34%	1,36%	5451	16,70	109	0,07	0,13%	0,03%	180	25,42
21	0,02	0,04%	0,01%	114	54,55	110	0,05	0,10%	0,02%	328	60,63
22	0,02	0,03%	0,01%	86	46,74	111	0,01	0,02%	0,01%	102	76,69
23	0,05	0,08%	0,02%	671	51,19	112	0,02	0,03%	0,01%	122	66,30
24	2,15	3,94%	0,85%	3177	18,34	113	0,02	0,04%	0,01%	208	96,30
25	0,02	0,03%	0,01%	102	58,96	114	10,61	19,48%	4,18%	7872	9,20

26 0.02 0.04% 0.01% 124 52.10 115 0.04 0.08% 0.02% 32.8 75.40 27 0.03 0.05% 0.01% 98 37.98 116 0.02 0.03% 0.01% 74 47.74 28 0.48 0.88% 0.01% 92 63.44 117 0.10 0.38% 0.01% 420 53.87 29 0.04 0.07% 0.01% 420 64.64 119 0.01 0.03% 0.01% 420 53.99 31 0.02 0.04% 0.03% 400 53.19 121 2.03 3.73% 0.80% 41.84 2.033 34 0.02 0.03% 0.01% 104 104 51.12 1.23 0.13 0.14% 30.94 33.50 35 0.09 0.16% 0.01% 120 58.82 127 0.40 0.13% 0.94% 56.2 43.36 36 0.05%												
27 0.03 0.05% 0.01% 98 37.98 116 0.02 0.03% 0.01% 49.15 28 0.48 0.88% 0.01% 206 0.44 118 1.04 1.01% 0.14% 2408 26.44 30 0.03 0.05% 0.01% 126 0.044 119 0.01 0.03% 0.01% 122 0.03 0.06% 0.01% 128 58.99 31 0.02 0.04% 0.01% 401 64.36 119 0.01 0.05% 0.01% 144 20.93 33 0.08 0.14% 0.03% 248 32.12 122 0.02 0.04% 506 56.55 124 0.13 0.24% 0.05% 61.24 33.50 36 0.03 0.05% 0.02% 210 58.82 127 0.13 0.13% 130 1.04 0.13% 130 1.04 0.14% 122 50.53 130 1.03 1.6% <td>26</td> <td>0,02</td> <td>0,04%</td> <td>0,01%</td> <td>124</td> <td>52,10</td> <td>115</td> <td>0,04</td> <td>0,08%</td> <td>0,02%</td> <td>328</td> <td>75,40</td>	26	0,02	0,04%	0,01%	124	52,10	115	0,04	0,08%	0,02%	328	75,40
28 0,48 0,88% 0,19% 996 23,87 117 0,10 0,18% 0,04% 490 49,15 29 0,04 0,07% 0,01% 220 60,44 118 0,01 0,03% 0,14% 82 58,99 31 0,02 0,04% 0,01% 400 53,19 121 2,03 3,73% 0,80% 4184 20,93 33 0,08 0,14% 0,03% 448 32,12 122 0,02 0,04% 0,01% 160 104,50 123 0,13 0,24% 0,05% 413 30,94 36 0,03 0,04% 506 56,85 124 0,11 0,24% 0,05% 662 43,36 37 0,05 0,04% 0,01% 210 58,82 127 0,40 0,73% 0,16% 766 19,20 39 0,18 0,07% 6,01% 36,29 130 1,03 1,89% 0,44% 126	27	0,03	0,05%	0,01%	98	37,98	116	0,02	0,03%	0,01%	74	47,74
29 0.04 0.07% 0.01% 220 60.44 118 1.04 1.91% 0.41% 2408 26,99 30 0.03 0.05% 0.01% 400 53,19 121 2.03 3.73% 0.80% 4184 20,93 33 0.08 0.14% 0.03% 248 32,12 122 0.02 0.04% 0.05% 63,36 34 0.02 0.03% 0.01% 160 104,50 123 0.13 0.24% 0.05% 624 43,36 35 0.09 0.16% 0.04% 506 5124 0.13 0.24% 0.05% 50,53 38 0.04 0.07% 0.01% 104 58,22 127 0.40 0.73% 0.04% 50,63 39 0.18 0.33% 0.07% 672 37,02 128 0.07 0.13% 0.04% 50,53 41 0.05 0.02% 1.03 1.89% 4.41% 1.04<	28	0,48	0,88%	0,19%	996	23,87	117	0,10	0,18%	0,04%	490	49,15
30 0,03 0,05% 0,01% 186 64,36 119 0,01 0,03% 0,01% 82 58,99 31 0,02 0,04% 0,01% 400 53,19 121 2,03 3,73% 0,80% 4142 20,93 33 0,08 0,14% 0,03% 400 53,19 121 2,03 3,73% 0,05% 410 3,436 34 0,02 0,03% 0,01% 160 104,50 123 0,13 0,24% 0,05% 410 30,94 36 0,03 0,05% 0,01% 144 52,17 125 2,39 4,38% 0,44% 7614 33,50 37 0,05 0,09% 0,01% 210 58,82 127 0,40 0,73% 0,16% 19,20 39 0,18 0,33% 0,07% 672 37,02 128 0,07 0,13% 0,03% 190 45,13 41 0,05 0,09%	29	0,04	0,07%	0,01%	220	60,44	118	1,04	1,91%	0,41%	2408	26,49
31 0,02 0,04% 0,01% 400 64,89 120 0,03 0,06% 0,11% 122 3,73% 0,06% 414 20,93 33 0,08 0,14% 0,03% 440 52,19 121 2,03 3,73% 0,06% 4184 20,13 34 0,02 0,03% 0,01% 160 104,50 123 0,13 0,24% 0,05% 562 43,36 35 0,09 0,16% 0,04% 506 56,85 124 0,13 0,24% 0,05% 401 30,4 36 0,04 0,07% 0,01% 210 58,82 127 0,40 0,73% 0,16% 766 19,20 37 0,05 0,03% 0,01% 672 37,02 128 0,07 0,13% 0,03% 100 1,31 1,89% 0,41% 2126 22,58 42 0,66 0,12% 0,02% 160 32,59 130 1,03 <td>30</td> <td>0,03</td> <td>0,05%</td> <td>0,01%</td> <td>186</td> <td>64,36</td> <td>119</td> <td>0,01</td> <td>0,03%</td> <td>0,01%</td> <td>82</td> <td>58,99</td>	30	0,03	0,05%	0,01%	186	64,36	119	0,01	0,03%	0,01%	82	58,99
32 0,08 0,14% 0,03% 400 53,19 121 2,03 3,73% 0,80% 4184 20,93 33 0,08 0,14% 0,03% 248 32,12 122 0,013 0,24% 0,015% 562 43,36 34 0,02 0,03% 0,01% 160 104,50 123 0,13 0,24% 0,05% 410 30,94 35 0,09 0,05% 0,01% 124 0,11 0,24% 0,05% 400 30,94 36 0,03 0,05% 0,01% 100 58,82 127 0,40 0,73% 0,616 762 19,20 39 0,18 0,33% 0,07% 672 37,02 128 0,07 0,13% 0,03% 190 26,13 41 0,05 0,09% 0,02% 160 32,59 130 1,031 1,89% 0,41% 2126 22,58 42 0,06 0,12% 0,02% <td>31</td> <td>0,02</td> <td>0,04%</td> <td>0,01%</td> <td>401</td> <td>64,89</td> <td>120</td> <td>0,03</td> <td>0,06%</td> <td>0,01%</td> <td>122</td> <td>38,24</td>	31	0,02	0,04%	0,01%	401	64,89	120	0,03	0,06%	0,01%	122	38,24
33 0,08 0,14% 0,03% 248 32,12 122 0,02 0,04% 0,01% 106 54,36 34 0,02 0,03% 0,01% 160 104,50 123 0,13 0,24% 0,05% 410 30,94 35 0,09 0,16% 0,01% 144 52,17 125 2,39 4,38% 0,94% 763 33,50 37 0,05 0,09% 0,02% 206 41,62 126 0,11 0,21% 0,04% 572 50,53 38 0,04 0,07% 0,01% 86 64,66 129 0,05 0,10% 26,13 40 0,01 0,02% 160 32,59 130 1,03 1,89% 0,41% 2126 22,58 42 0,06 0,12% 0,02% 144 33 0,02 0,01% 130 0,22 0,01% 130 1,22 0,11% 130 1,22 5,774	32	0,08	0,14%	0,03%	400	53,19	121	2,03	3,73%	0,80%	4184	20,93
34 0,02 0,03% 0,01% 160 104,50 123 0,13 0,24% 0,05% 562 4,3,36 35 0,09 0,16% 0,01% 144 52,17 125 2,39 4,38% 0,94% 7634 33,50 37 0,05 0,07% 0,01% 210 58,82 127 0,40 0,73% 0,16% 766 19,20 39 0,18 0,33% 0,07% 672 37,02 128 0,07 0,13% 200 6,16 129 0,05 0,13% 202 5,74 41 0,05 0,02% 100 32,59 130 1,03 1,89% 0,41% 120 5,52 42 0,06 0,12% 0,02% 146 38,86 131 0,04 0,11% 130 5,22 43 0,25 0,45% 0,02% 147 36,40 134 0,02 0,01% 100 5,22 44 <td< td=""><td>33</td><td>0,08</td><td>0,14%</td><td>0,03%</td><td>248</td><td>32,12</td><td>122</td><td>0,02</td><td>0,04%</td><td>0,01%</td><td>106</td><td>54,36</td></td<>	33	0,08	0,14%	0,03%	248	32,12	122	0,02	0,04%	0,01%	106	54,36
35 0,09 0,16% 0,04% 506 56,85 124 0,13 0,24% 0,05% 410 30,94 36 0,03 0,05% 0,01% 144 52,17 125 2,39 4,38% 0,94% 7634 33,50 37 0,05 0,09% 0,02% 210 58,82 127 0,40 0,73% 0,16% 766 19,20 39 0,18 0,33% 0,07% 672 37,02 128 0,07 0,13% 0,03% 190 26,13 40 0,01 0,02% 0,01% 86 64,66 129 0,05 0,10% 130 95,59 41 0,05 0,09% 0,02% 174 36,40 134 0,02 0,04% 0,01% 150 63,29 43 0,25 0,45% 0,01% 148 7,08 131 0,01 0,02% 0,01% 160 161 64,61 134 0,02 0,01%	34	0,02	0,03%	0,01%	160	104,50	123	0,13	0,24%	0,05%	562	43,36
36 0,03 0,05% 0,01% 144 52,17 125 2,39 4,38% 0,94% 7634 33,50 37 0,05 0,09% 0,02% 206 41,62 126 0,11 0,21% 0,04% 572 50,53 38 0,04 0,07% 0,01% 86 64,66 129 0,05 0,03% 100 22,613 40 0,01 0,02% 0,01% 86 64,66 129 0,05 0,03% 0,03% 126 22,58 41 0,05 0,09% 0,02% 160 32,59 130 1,03 1,89% 0,41% 2126 52,58 43 0,25 0,45% 0,10% 530 23,90 132 0,01 0,01% 150 63,29 44 0,20 0,37% 0,01% 143 133 0,01% 106 61,27 45 0,05 0,09% 0,02% 296 72,02 137	35	0,09	0,16%	0,04%	506	56,85	124	0,13	0,24%	0,05%	410	30,94
370.050.09%0.02%20641,621260.110.21%0.04%57250,53380.040.07%0.01%21058,821270.400,73%0.16%76619,20390.180.33%0.07%67237,021280.070.13%0.06%19026,13400.010.02%0.01%66641290.050.10%0.02%27049,54410.050.09%0.02%16032,591301.031,89%0.41%212622,58420.060.12%0.01%53023,901320.010.02%0.01%13095,59440.200.37%0.08%89044,341330.020.03%0.01%10661,27450.050.09%0.02%17436,401340.020.03%0.01%10661,27460.020.04%0.01%14877,081350.010.02%0.00%10081,97470.030.05%0.01%14877,021370,120.21%0.00%126103,20500.370.69%0.15%163043,661390.030.06%0.01%126103,20510.030.66%0.11%15246,691400.020.03%0.01%13475,71520.020.33%<	36	0,03	0,05%	0,01%	144	52,17	125	2,39	4,38%	0,94%	7634	33,50
38 0,04 0,07% 0,01% 210 58,82 127 0,40 0,73% 0,16% 766 19,20 39 0,18 0,33% 0,07% 672 37,02 128 0,07 0,13% 0,03% 190 26,13 40 0,01 0,02% 0,01% 86 64,66 129 0,05 0,01% 0,02% 210 9,53 41 0,05 0,09% 0,02% 246 38,86 131 0,04 0,07% 0,01% 120 57,74 43 0,25 0,45% 0,10% 530 23,90 132 0,01 0,02% 0,01% 130 95,59 44 0,20 0,37% 0,08% 890 44,34 133 0,02 0,00% 100 81,77 46 0,02 0,03% 0,01% 148 7,76 136 0,01 0,02% 0,01% 124 82,31 47 0,04 0,08%	37	0,05	0,09%	0,02%	206	41,62	126	0,11	0,21%	0,04%	572	50,53
390.180.33%0.07%67237,021280.070.13%0.03%19026,13400.010.02%0.01%8664,661290.050.10%0.02%27049,54410.050.09%0.02%16032,591301.031,89%0,41%212622,58420.060.12%0.02%24638,861310.040.07%0.01%22057,74430.250.45%0.10%53023,901320.010.02%0.01%13095,59440.200.37%0.08%89044,341330.020.04%0.01%15063,29450.050.09%0.02%17436,401340.020.03%0.01%12481,31470.030.05%0.01%14877,081350.010.02%0.00%12482,31480.040.08%0.02%23253,461380.010.02%0.00%126103,20500.370.69%0.15%163043,661390.030.06%0.01%13256,17510.030.05%0.01%13253,021430.020.03%0.01%13475,71520.020.03%0.11%15246,591410.010.02%0.00%7259,02540.020.03% <t< td=""><td>38</td><td>0,04</td><td>0,07%</td><td>0,01%</td><td>210</td><td>58,82</td><td>127</td><td>0,40</td><td>0,73%</td><td>0,16%</td><td>766</td><td>19,20</td></t<>	38	0,04	0,07%	0,01%	210	58,82	127	0,40	0,73%	0,16%	766	19,20
40 0,01 0,02% 0,01% 86 64,66 129 0,05 0,10% 0,02% 270 49,54 41 0,05 0,09% 0,02% 160 32,59 130 1,03 1,89% 0,41% 2126 22,58 42 0,06 0,12% 0,02% 246 38,86 131 0,04 0,07% 0,01% 30 95,59 43 0,20 0,37% 0,08% 890 44,34 133 0,02 0,04% 0,11% 150 63,29 445 0,05 0,09% 0,02% 174 36,40 134 0,02 0,03% 0,01% 126 61,27 46 0,02 0,04% 0,01% 148 77,08 135 0,01 0,02% 214 82,31 47 0,33 0,05% 0,01% 1630 43,66 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 138 0,01 0,01% 132 53,71	39	0,18	0,33%	0,07%	672	37,02	128	0,07	0,13%	0,03%	190	26,13
41 $0,05$ $0,09\%$ $0,02\%$ 160 $32,59$ 130 $1,03$ $1,89\%$ $0,41\%$ 2126 $22,58$ 42 $0,06$ $0,12\%$ $0,02\%$ 246 $38,86$ 131 $0,04$ $0,07\%$ $0,01\%$ 220 $57,74$ 43 $0,25$ $0,45\%$ $0,10\%$ 530 $23,90$ 132 $0,01$ $0,02\%$ $0,01\%$ 130 $95,59$ 44 $0,20$ $0,37\%$ $0,09\%$ 890 $44,34$ 133 $0,02$ $0,04\%$ $0,01\%$ 150 $63,29$ 45 $0,05$ $0,09\%$ $0,02\%$ 174 $36,40$ 134 $0,02\%$ $0,03\%$ $0,01\%$ 150 $63,29$ 47 $0,03$ $0,05\%$ $0,01\%$ 148 $77,08$ 135 $0,01$ $0,05\%$ $0,11\%$ 214 $82,31$ 48 $0,04$ $0,08\%$ $0,02\%$ 226 $72,02$ 137 $0,12$ $0,21\%$ $0,05\%$ 614 $53,30$ 49 $0,44$ $0,88\%$ $0,22\%$ 232 $53,46$ 138 $0,01$ $0,02\%$ $0,00\%$ 126 $103,20$ 50 $0,37$ $0,69\%$ $0,15\%$ 1630 $43,66$ 139 $0,03$ $0,06\%$ $0,11\%$ 182 $56,17$ 51 $0,03$ $0,66\%$ $0,11\%$ 162 $46,69$ 140 $0,01$ $0,02\%$ $0,01\%$ 132 $8,94$ 52 $0,22$ $0,33\%$ $0,11\%$ 150 $46,67$ 141 $0,01$ $0,01\%$ 128 <td< td=""><td>40</td><td>0,01</td><td>0,02%</td><td>0,01%</td><td>86</td><td>64,66</td><td>129</td><td>0,05</td><td>0,10%</td><td>0,02%</td><td>270</td><td>49,54</td></td<>	40	0,01	0,02%	0,01%	86	64,66	129	0,05	0,10%	0,02%	270	49,54
42 $0,06$ $0,12%$ $0,02%$ 246 $38,86$ 131 $0,04$ $0,07%$ $0,01%$ 220 $57,74$ 43 $0,25$ $0,45%$ $0,10%$ 530 $23,90$ 132 $0,01$ $0,02%$ $0,01%$ 130 $95,59$ 44 $0,20$ $0,37%$ $0,08%$ 890 $44,34$ 133 $0,02$ $0,04%$ $0,01%$ 150 $63,29$ 45 $0,05$ $0,09%$ $0,02%$ 174 $36,40$ 134 $0,02$ $0,03%$ $0,01%$ 106 $61,27$ 46 $0,02$ $0,04%$ $0,01%$ 148 $7,08$ 135 $0,01$ $0,05%$ $0,01%$ 106 $81,97$ 47 $0,03$ $0,05%$ $0,01%$ 148 $7,076$ 136 $0,03$ $0,05%$ $0,11%$ 214 $82,311$ 48 $0,04$ $0,08%$ $0,02%$ 232 $53,46$ 138 $0,01$ $0,05%$ $0,11%$ 128 $256,17$ 50 $0,37$ $0,69%$ $0,15%$ 1630 $43,66$ 139 $0,03$ $0,06%$ $0,11%$ 134 $75,71$ 52 $0,02$ $0,03%$ $0,11%$ 162 $46,69$ 140 $0,02$ $0,03%$ $0,11%$ 134 $75,71$ 53 $0,02$ $0,03%$ $0,11%$ 132 $83,02$ 143 $0,03$ $0,00%$ 72 $59,02$ 54 $0,02$ $0,33%$ $0,11%$ 132 $83,02$ 143 $0,03$ $0,01%$ 134 <td>41</td> <td>0,05</td> <td>0,09%</td> <td>0,02%</td> <td>160</td> <td>32,59</td> <td>130</td> <td>1,03</td> <td>1,89%</td> <td>0,41%</td> <td>2126</td> <td>22,58</td>	41	0,05	0,09%	0,02%	160	32,59	130	1,03	1,89%	0,41%	2126	22,58
43 0,25 0,45% 0,10% 530 23,90 132 0,01 0,02% 0,01% 130 95,99 44 0,20 0,37% 0,08% 890 44,34 133 0,02 0,04% 0,01% 150 63,29 45 0,05 0,09% 0,02% 174 36,40 134 0,02 0,03% 0,01% 106 61,27 46 0,02 0,04% 0,01% 148 77,08 135 0,01 0,02% 0,00% 100 81,97 47 0,03 0,05% 0,01% 196 70,76 136 0,03 0,05% 0,01% 126 103,20 48 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 132 53,02 51 0,03 0,06% 0,11% 152 46,69 140 0,02 0,3% 0,01%	42	0,06	0,12%	0,02%	246	38,86	131	0,04	0,07%	0,01%	220	57,74
44 0,20 0,37% 0,08% 890 44,34 133 0,02 0,04% 0,01% 150 63,29 45 0,05 0,09% 0,02% 174 36,40 134 0,02 0,03% 0,01% 106 61,27 46 0,02 0,04% 0,01% 148 77,08 135 0,01 0,02% 0,00% 100 81,97 47 0,03 0,05% 0,01% 196 77,76 136 0,03 0,05% 0,01% 124 82,31 48 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,02 50 0,37 0,66% 0,11% 162 46,69 140 0,02 0,03% 0,01% 134 75,71 52 0,02 0,03% 0,11% 132 83,02 143 0,01 0,02% 0,01% 130 82,64 53 0,45	43	0,25	0,45%	0,10%	530	23,90	132	0,01	0,02%	0,01%	130	95,59
45 0,05 0,09% 0,02% 174 36,40 134 0,02 0,03% 0,01% 106 61,27 46 0,02 0,04% 0,01% 148 77,08 135 0,01 0,02% 0,00% 100 81,97 47 0,03 0,05% 0,01% 196 70,76 136 0,03 0,05% 0,01% 214 82,31 48 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 122 56,17 51 0,03 0,06% 0,11% 162 46,69 140 0,02 0,03% 0,01% 113 75,71 52 0,02 0,03% 0,01% 132 83,02 143 0,03 0,06% 0,01% 114 83,01 54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,01% 101	44	0,20	0,37%	0,08%	890	44,34	133	0,02	0,04%	0,01%	150	63,29
46 0,02 0,04% 0,01% 148 77,08 135 0,01 0,02% 0,00% 100 81,97 47 0,03 0,05% 0,01% 196 70,76 136 0,03 0,05% 0,01% 214 82,31 48 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 182 56,17 51 0,03 0,06% 0,01% 160 94,67 141 0,01 0,02% 0,01% 110 85,94 53 0,45 0,82% 0,18% 1378 30,83 142 0,01 0,02% 0,01% 128 62,64 55 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,01% 128 84,81 56 1,94	45	0,05	0,09%	0,02%	174	36,40	134	0,02	0,03%	0,01%	106	61,27
47 0,03 0,05% 0,01% 196 70,76 136 0,03 0,05% 0,01% 214 82,31 48 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 182 56,17 51 0,03 0,06% 0,01% 162 46,69 140 0,02 0,03% 0,01% 110 85,94 53 0,45 0,82% 0,18% 1378 30,83 142 0,01 0,02% 0,00% 72 59,02 54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,06% 0,01% 128 62,64 55 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,03% 298 34,81 56 1,94 3,57% 0,76% 3450 18,35 145 0,04 0,7% 0,01%	46	0,02	0,04%	0,01%	148	77,08	135	0,01	0,02%	0,00%	100	81,97
48 0,04 0,08% 0,02% 296 72,02 137 0,12 0,21% 0,05% 614 53,30 49 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 182 56,17 51 0,03 0,06% 0,01% 162 46,69 140 0,02 0,03% 0,01% 134 75,71 52 0,02 0,03% 0,01% 160 94,67 141 0,01 0,02% 0,01% 110 85,94 53 0,45 0,82% 0,18% 1378 30,83 142 0,01 0,02% 0,00% 72 59,02 54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,66% 0,01% 148 62,64 55 0,02 0,03% 0,01% 134 130 14,27 146 0,02 0,3%	47	0,03	0,05%	0,01%	196	70,76	136	0,03	0,05%	0,01%	214	82,31
49 0,04 0,08% 0,02% 232 53,46 138 0,01 0,02% 0,00% 126 103,20 50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 182 56,17 51 0,03 0,06% 0,01% 162 46,69 140 0,02 0,03% 0,01% 134 75,71 52 0,02 0,03% 0,01% 160 94,67 141 0,01 0,02% 0,00% 72 59,02 54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,06% 0,01% 218 62,64 55 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,01% 144 54,49 56 1,94 3,57% 0,76% 3450 18,35 145 0,04 0,07% 0,01% 148 84,57 58 0,02 0,03% 0,01% 104 60,82 147 0,04 0,07% 0,01%	48	0,04	0,08%	0,02%	296	72,02	137	0,12	0,21%	0,05%	614	53,30
50 0,37 0,69% 0,15% 1630 43,66 139 0,03 0,06% 0,01% 182 56,17 51 0,03 0,06% 0,01% 162 46,69 140 0,02 0,03% 0,01% 134 75,71 52 0,02 0,03% 0,01% 160 94,67 141 0,01 0,02% 0,01% 110 85,94 53 0,45 0,82% 0,18% 1378 30,83 142 0,01 0,02% 0,00% 72 59,02 54 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,03% 298 34,81 56 1,94 3,57% 0,76% 3450 18,35 145 0,04 0,07% 0,01% 194 54,49 57 0,79 1,45% 0,31% 1130 14,27 146 0,02 0,03% 0,01% 152 40,32 58 0,02	49	0,04	0,08%	0,02%	232	53,46	138	0,01	0,02%	0,00%	126	103,20
51 0,03 0,06% 0,01% 162 46,69 140 0,02 0,03% 0,01% 134 75,71 52 0,02 0,03% 0,01% 160 94,67 141 0,01 0,02% 0,01% 110 85,94 53 0,45 0,82% 0,18% 1378 30,83 142 0,01 0,02% 0,00% 72 59,02 54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,06% 0,01% 218 62,64 55 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,03% 298 34,81 56 1,94 3,57% 0,76% 3450 18,35 145 0,04 0,07% 0,01% 194 54,49 57 0,79 1,45% 0,31% 1130 14,27 146 0,02 0,03% 0,01% 152 40,32 59 0,02	50	0,37	0,69%	0,15%	1630	43,66	139	0,03	0,06%	0,01%	182	56,17
52 0,02 0,03% 0,01% 160 94,67 141 0,01 0,02% 0,01% 110 85,94 53 0,45 0,82% 0,18% 1378 30,83 142 0,01 0,02% 0,00% 72 59,02 54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,06% 0,01% 218 62,64 55 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,03% 298 34,81 56 1,94 3,57% 0,76% 3450 18,35 145 0,04 0,07% 0,01% 194 54,49 57 0,79 1,45% 0,31% 1130 14,27 146 0,02 0,03% 0,01% 152 40,32 58 0,02 0,04% 0,01% 128 62,44 148 0,02 0,03% 0,01% 152 40,32 61 0,08 0,14% 0,03% 252 31,50 150 0,12 0,23% 0,05%	51	0,03	0,06%	0,01%	162	46,69	140	0,02	0,03%	0,01%	134	75,71
530,450,82%0,18%137830,831420,010,02%0,00%7259,02540,020,03%0,01%13283,021430,030,06%0,01%21862,64550,020,03%0,01%7650,001440,090,16%0,03%29834,81561,943,57%0,76%345018,351450,040,07%0,01%19454,49570,791,45%0,31%113014,271460,020,03%0,01%14884,57580,020,03%0,01%10460,821470,040,07%0,01%15240,32590,020,04%0,01%11048,461490,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%17652,63650,030,06%0,01%14663,391560,120,23%0,05%45636,86680,020,03% <td< td=""><td>52</td><td>0,02</td><td>0,03%</td><td>0,01%</td><td>160</td><td>94,67</td><td>141</td><td>0,01</td><td>0,02%</td><td>0,01%</td><td>110</td><td>85,94</td></td<>	52	0,02	0,03%	0,01%	160	94,67	141	0,01	0,02%	0,01%	110	85,94
54 0,02 0,03% 0,01% 132 83,02 143 0,03 0,06% 0,01% 218 62,64 55 0,02 0,03% 0,01% 76 50,00 144 0,09 0,16% 0,03% 298 34,81 56 1,94 3,57% 0,76% 3450 18,35 145 0,04 0,07% 0,01% 194 54,49 57 0,79 1,45% 0,31% 1130 14,27 146 0,02 0,03% 0,01% 148 84,57 58 0,02 0,03% 0,01% 104 60,82 147 0,04 0,07% 0,01% 152 40,32 59 0,02 0,04% 0,01% 110 48,46 149 0,02 0,3% 0,01% 122 64,89 61 0,08 0,15% 0,03% 252 31,50 150 0,12 0,23% 0,05% 532 44,26 63 0,02	53	0,45	0,82%	0,18%	1378	30,83	142	0,01	0,02%	0,00%	72	59,02
550,020,03%0,01%7650,001440,090,16%0,03%29834,81561,943,57%0,76%345018,351450,040,07%0,01%19454,49570,791,45%0,31%113014,271460,020,03%0,01%14884,57580,020,03%0,01%10460,821470,040,07%0,01%15240,32590,020,04%0,01%12862,441480,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%	54	0,02	0,03%	0,01%	132	83,02	143	0,03	0,06%	0,01%	218	62,64
561,943,57%0,76%345018,351450,040,07%0,01%19454,49570,791,45%0,31%113014,271460,020,03%0,01%14884,57580,020,03%0,01%10460,821470,040,07%0,01%15240,32590,020,04%0,01%12862,441480,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%11663,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03% <td< td=""><td>55</td><td>0,02</td><td>0,03%</td><td>0,01%</td><td>76</td><td>50,00</td><td>144</td><td>0,09</td><td>0,16%</td><td>0,03%</td><td>298</td><td>34,81</td></td<>	55	0,02	0,03%	0,01%	76	50,00	144	0,09	0,16%	0,03%	298	34,81
570,791,45%0,31%113014,271460,020,03%0,01%14884,57580,020,03%0,01%10460,821470,040,07%0,01%15240,32590,020,04%0,01%12862,441480,020,03%0,01%9854,14600,020,04%0,01%11048,461490,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0	56	1,94	3,57%	0,76%	3450	18,35	145	0,04	0,07%	0,01%	194	54,49
580,020,03%0,01%10460,821470,040,07%0,01%15240,32590,020,04%0,01%12862,441480,020,03%0,01%9854,14600,020,04%0,01%11048,461490,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,	57	0,79	1,45%	0,31%	1130	14,27	146	0,02	0,03%	0,01%	148	84,57
590,020,04%0,01%12862,441480,020,03%0,01%9854,14600,020,04%0,01%11048,461490,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,	58	0,02	0,03%	0,01%	104	60,82	147	0,04	0,07%	0,01%	152	40,32
600,020,04%0,01%11048,461490,020,03%0,01%12264,89610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0	59	0,02	0,04%	0,01%	128	62,44	148	0,02	0,03%	0,01%	98	54,14
610,080,15%0,03%25231,501500,120,23%0,05%21417,46620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	60	0,02	0,04%	0,01%	110	48,46	149	0,02	0,03%	0,01%	122	64,89
620,080,14%0,03%55072,271510,120,22%0,05%53244,26630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,11%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	61	0,08	0,15%	0,03%	252	31,50	150	0,12	0,23%	0,05%	214	17,46
630,020,03%0,01%13082,281520,250,47%0,10%66429,13640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	62	0,08	0,14%	0,03%	550	72,27	151	0,12	0,22%	0,05%	532	44,26
640,060,11%0,02%13823,791530,010,02%0,01%7052,63650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	63	0,02	0,03%	0,01%	130	82,28	152	0,25	0,47%	0,10%	664	29,13
650,030,06%0,01%14442,601540,040,08%0,02%13431,09660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	64	0,06	0,11%	0,02%	138	23,79	153	0,01	0,02%	0,01%	70	52,63
660,020,04%0,01%13660,181550,230,43%0,09%27611,87670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	65	0,03	0,06%	0,01%	144	42,60	154	0,04	0,08%	0,02%	134	31,09
670,020,03%0,01%11663,391560,120,23%0,05%45636,86680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	66	0,02	0,04%	0,01%	136	60,18	155	0,23	0,43%	0,09%	276	11,87
680,020,03%0,01%12467,391570,030,06%0,01%11638,67690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	67	0,02	0,03%	0,01%	116	63,39	156	0,12	0,23%	0,05%	456	36,86
690,040,07%0,01%12836,061580,290,52%0,11%74826,58700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	68	0,02	0,03%	0,01%	124	67,39	157	0,03	0,06%	0,01%	116	38,67
700,020,03%0,01%11667,441590,030,05%0,01%12042,86710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	69	0,04	0,07%	0,01%	128	36,06	158	0,29	0,52%	0,11%	748	26,58
710,020,03%0,01%7247,681600,460,85%0,18%163837,67720,050,09%0,02%32869,641610,040,07%0,02%15039,16	70	0,02	0,03%	0,01%	116	67,44	159	0,03	0,05%	0,01%	120	42,86
72 0,05 0,09% 0,02% 328 69,64 161 0,04 0,07% 0,02% 150 39,16	71	0,02	0,03%	0,01%	72	47,68	160	0,46	0,85%	0,18%	1638	37,67
	72	0,05	0,09%	0,02%	328	69,64	161	0,04	0,07%	0,02%	150	39,16

73	0,05	0,09%	0,02%	302	62,40	162	0,29	0,53%	0,11%	680	23,45
74	0,01	0,02%	0,01%	78	60,00	163	0,02	0,04%	0,01%	92	47,92
75	0,27	0,50%	0,11%	834	30,92	164	5,06	9,29%	1,99%	8126	18,96
76	0,80	1,46%	0,31%	2332	31,62	165	0,24	0,45%	0,10%	632	26,00
77	0,02	0,04%	0,01%	150	70,09	166	0,02	0,04%	0,01%	376	65,70
78	0,21	0,38%	0,08%	732	35,18	167	0,03	0,05%	0,01%	152	58,91
79	0,83	1,53%	0,33%	2418	33,23	168	0,02	0,03%	0,01%	124	72,09
80	0,03	0,06%	0,01%	198	63,06	169	0,05	0,09%	0,02%	156	30,47
81	0,02	0,04%	0,01%	182	78,45	170	0,19	0,35%	0,08%	408	21,25
82	0,02	0,03%	0,01%	160	91,95	171	0,02	0,03%	0,01%	70	39,55
83	0,02	0,04%	0,01%	419	70,48	172	5,81	10,67%	2,29%	3578	6,40
84	1,02	1,87%	0,40%	1918	20,74	173	0,10	0,19%	0,04%	290	28,21
85	0,02	0,03%	0,01%	120	66,30	174	0,02	0,04%	0,01%	126	51,64
86	0,01	0,02%	0,00%	76	62,30	175	0,30	0,54%	0,12%	1040	38,28
87	0,07	0,14%	0,03%	322	43,28	176	0,02	0,04%	0,01%	116	54,72
88	0,09	0,17%	0,04%	220	23,86	177	0,09	0,16%	0,03%	240	27,62
89	0,01	0,03%	0,01%	68	48,92	178	2,33	4,28%	0,92%	1200	5,60
						Media:	0,31		21,52%	6	20,62

Indici geometrici dei patch nella frammentazione del 25% di habitat per il paesaggio del Lamone

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,13	0,19%	0,05%	358	27,06	119	0,02	0,03%	0,01%	144	63,72
2	0,01	0,02%	0,00%	80	65,04	120	0,09	0,13%	0,04%	320	35,91
3	0,68	0,98%	0,27%	1312	19,31	121	0,07	0,10%	0,03%	434	63,17
4	0,02	0,02%	0,01%	96	60,38	122	1,41	2,03%	0,56%	3258	28,68
5	0,02	0,03%	0,01%	76	40,64	123	0,07	0,10%	0,03%	422	60,81
6	0,02	0,02%	0,01%	102	66,23	124	0,02	0,02%	0,01%	92	60,53
7	0,71	1,01%	0,28%	566	11,08	125	0,02	0,03%	0,01%	92	42,01
8	0,02	0,03%	0,01%	160	68,97	126	0,27	0,39%	0,11%	692	25,82
9	0,06	0,09%	0,03%	182	28,48	127	0,03	0,05%	0,01%	176	51,31
10	0,11	0,15%	0,04%	254	23,98	128	0,11	0,16%	0,04%	444	39,82
11	0,03	0,05%	0,01%	154	44,51	129	0,01	0,02%	0,01%	108	78,83
12	0,10	0,15%	0,04%	390	37,86	130	0,02	0,03%	0,01%	132	54,32
13	0,02	0,02%	0,01%	96	62,34	131	0,04	0,06%	0,02%	401	40,00
14	0,22	0,32%	0,09%	454	20,72	132	0,02	0,02%	0,01%	66	40,24
15	0,08	0,11%	0,03%	162	20,33	133	0,02	0,03%	0,01%	142	71,36
16	0,18	0,25%	0,07%	8	21,47	134	0,02	0,02%	0,01%	114	76,00
17	0,92	1,33%	0,36%	1706	19,37	135	0,02	0,02%	0,01%	154	92,77
18	0,13	0,19%	0,05%	228	17,54	136	0,03	0,04%	0,01%	160	56,14
19	0,29	0,41%	0,11%	726	25,42	137	0,07	0,10%	0,03%	180	25,42
20	0,27	0,38%	0,10%	658	31,42	138	0,05	0,08%	0,02%	328	60,63
21	0,04	0,06%	0,02%	160	38,55	139	0,02	0,03%	0,01%	158	73,83
22	0,06	0,09%	0,03%	220	34,54	140	0,01	0,02%	0,01%	102	76,69

23	0,17	0,25%	0,07%	710	40,88	141	0,02	0,03%	0,01%	122	66,30
24	0,03	0,05%	0,01%	148	45,40	142	0,02	0,03%	0,01%	208	96,30
25	0,53	0,77%	0,21%	770	14,45	143	2,64	3,80%	1,04%	3702	16,51
26	0,02	0,02%	0,01%	142	89,87	144	0,26	0,38%	0,10%	536	26,93
27	0,02	0,03%	0,01%	114	54,55	145	0,04	0,06%	0,02%	328	75,40
28	0,02	0,03%	0,01%	86	46,74	146	0,02	0,02%	0,01%	74	47,74
29	0,05	0,07%	0,02%	671	51,19	147	0,08	0,12%	0,03%	352	43,56
30	0.02	0.02%	0.01%	102	58.96	148	0.10	0.14%	0.04%	490	49.15
31	0.02	0.03%	0.01%	124	52.10	149	0.62	0.89%	0.24%	998	21.96
32	0.03	0.04%	0.01%	98	37 98	150	0.01	0.02%	0.01%	82	58 99
33	0 47	0.68%	0.19%	974	23 71	151	0.03	0.05%	0.01%	122	38 24
34	2 28	3 28%	0.90%	3333	26.98	152	1 87	2 69%	0.73%	4318	23 54
35	0.04	0.05%	0.01%	220	60.44	152	0.13	0 19%	0.05%	562	43 36
36	0.03	0.04%	0.01%	172	58 11	154	0.13	0,19%	0.05%	410	30.94
27	0,03	0,04%	0,01%	196	64.26	155	2 11	3 03%	0,03%	410 685 <i>1</i>	24.24
20	0,03	0,04%	0,01%	226	50 75	155	0.11	0.16%	0,03%	572	50 52
20	0,04	0,00%	0,0270	230 401	64.90	157	0,11	0,10%	0,04%	170	22 14
39	0,02	0,0370	0,01%	401	04,05 E2 10	157	0,19	0,2776	0,07%	420	25,14
40	0,08	0,11%	0,03%	400	22,19	158	0,07	0,10%	0,03%	190	20,13
41	0,08	0,11%	0,03%	248	32,12	159	0,02	0,03%	0,01%	90	48,13
42	0,02	0,02%	0,01%	160	104,50	160	0,48	0,68%	0,19%	1146	29,31
43	0,09	0,13%	0,04%	506	56,85	161	0,04	0,05%	0,01%	220	57,74
44	0,03	0,04%	0,01%	144	52,17	162	0,05	0,08%	0,02%	136	26,05
45	0,05	0,07%	0,02%	206	41,62	163	0,01	0,02%	0,01%	130	95,59
46	0,68	0,98%	0,27%	1366	20,08	164	0,02	0,03%	0,01%	150	63,29
47	0,18	0,26%	0,07%	670	37,22	165	0,02	0,02%	0,01%	106	61,27
48	0,02	0,03%	0,01%	134	63,81	166	0,01	0,02%	0,00%	100	81,97
49	0,01	0,02%	0,01%	86	64,66	167	0,03	0,04%	0,01%	214	82,31
50	0,05	0,07%	0,02%	160	32,59	168	0,12	0,17%	0,05%	614	53,30
51	0,06	0,09%	0,02%	246	38,86	169	0,01	0,02%	0,00%	126	103,20
52	0,12	0,17%	0,05%	360	30,08	170	0,03	0,05%	0,01%	182	56,17
53	0,04	0,06%	0,02%	202	47,20	171	0,02	0,03%	0,01%	134	75,71
54	0,02	0,03%	0,01%	148	77,08	172	0,01	0,02%	0,01%	110	85,94
55	0,03	0,04%	0,01%	196	70,76	173	0,10	0,14%	0,04%	496	52,10
56	0,02	0,03%	0,01%	164	79,23	174	0,01	0,02%	0,00%	72	59,02
57	0,09	0,13%	0,04%	318	35,37	175	0,10	0,15%	0,04%	418	40,70
58	0,04	0,06%	0,02%	232	53,46	176	0,03	0,05%	0,01%	218	62,64
59	0,31	0,44%	0,12%	1288	42,08	177	0,09	0,12%	0,03%	298	34,81
60	0,33	0,47%	0,13%	621	19,06	178	0,02	0,03%	0,01%	184	88,46
61	0,03	0,05%	0,01%	162	46,69	179	0,15	0,21%	0,06%	564	37,80
62	0,02	0,02%	0,01%	160	94,67	180	0,04	0,05%	0,01%	194	54,49
63	0,30	0,43%	0,12%	854	28,39	181	0,02	0,03%	0,01%	148	84,57
64	0,02	0,02%	0,01%	132	83,02	182	0,04	0,05%	0,01%	152	40,32
65	0,02	0,02%	0,01%	76	50,00	183	0,06	0,09%	0,03%	248	38,93
66	0,13	0,19%	0,05%	408	30,29	184	0,02	0,03%	0,01%	98	54,14
67	0,50	0,72%	0,20%	560	11,21	185	0,08	0,11%	0,03%	154	19,69
68	0,02	0,02%	0,01%	104	60,82	186	0,40	0,58%	0,16%	1110	29,49
69	0,02	0,03%	0,01%	128	62,44	187	0,01	0,02%	0,01%	70	52,63

70	0,01	0,02%	0,01%	112	77,24	188	0,04	0,06%	0,02%	134	31,09
71	0,02	0,03%	0,01%	110	48,46	189	0,23	0,33%	0,09%	276	11,87
72	0,02	0,03%	0,01%	80	35,24	190	0,02	0,03%	0,01%	86	40,19
73	0,08	0,12%	0,03%	254	30,94	191	0,29	0,41%	0,11%	748	26,58
74	0,08	0,12%	0,03%	252	31,50	192	0,01	0,02%	0,01%	80	61,54
75	0,17	0,25%	0,07%	332	19,16	193	0,03	0,04%	0,01%	120	42,86
76	0,06	0,08%	0,02%	138	23,79	194	0,25	0,35%	0,10%	412	16,73
77	0,03	0,05%	0,01%	144	42,60	195	0,08	0,12%	0,03%	206	24,67
78	0,02	0,02%	0,01%	154	90,06	196	0,10	0,15%	0,04%	466	45,42
79	0,06	0,08%	0,02%	358	64,86	197	0,04	0,05%	0,01%	146	38,42
80	0,02	0,03%	0,01%	116	63,39	198	0,03	0,04%	0,01%	124	49,21
81	0,02	0,03%	0,01%	124	67,39	199	0,14	0,19%	0,05%	380	28,15
82	0,04	0,05%	0,01%	128	36,06	200	0,02	0,03%	0,01%	114	52,29
83	0,02	0,02%	0,01%	116	67,44	201	0,51	0,73%	0,20%	1004	21,60
84	0,36	0,51%	0,14%	760	27,04	202	3,47	4,99%	1,37%	4731	17,10
85	0,16	0,22%	0,06%	566	36,26	203	0,52	0,76%	0,21%	1492	31,29
86	0,05	0,07%	0,02%	328	69,94	204	0,04	0,05%	0,01%	184	50,83
87	0,01	0,02%	0,01%	104	79,39	205	0,02	0,03%	0,01%	92	47,92
88	0,02	0,03%	0,01%	92	39,15	206	0,15	0,21%	0,06%	354	23,84
89	0,01	0,02%	0,01%	78	60,00	207	0,13	0,19%	0,05%	590	44,70
90	0,01	0,02%	0,01%	82	63,08	208	0,03	0,04%	0,01%	242	84,62
91	0,03	0,04%	0,01%	148	58,04	209	0,12	0,18%	0,05%	510	41,20
92	0,02	0,03%	0,01%	133	65,05	210	0,17	0,25%	0,07%	482	27,57
93	0,23	0,32%	0,09%	732	32,52	211	0,07	0,09%	0,03%	190	29,01
94	0,06	0,08%	0,02%	238	64,38	212	0,02	0,03%	0,01%	376	65,70
95	0,01	0,02%	0,01%	70	46,98	213	0,03	0,04%	0,01%	152	58,91
96	0,02	0,04%	0,01%	144	59,02	214	0,07	0,10%	0,03%	198	29,16
97	0,15	0,21%	0,06%	694	47,40	215	0,01	0,02%	0,01%	76	58,91
98	0,02	0,03%	0,01%	150	70,09	216	0,02	0,02%	0,01%	100	66,67
99	0,10	0,14%	0,04%	352	35,59	217	0,02	0,02%	0,01%	106	65,43
100	0,16	0,23%	0,06%	806	51,37	218	0,08	0,11%	0,03%	356	45,35
101	0,10	0,15%	0,04%	284	27,26	219	10,22	14,70%	4,02%	7389	11,82
102	0,78	1,12%	0,31%	3042	34,86	220	1,28	1,85%	0,51%	1818	15,66
103	0,03	0,05%	0,01%	198	63,06	221	0,02	0,03%	0,01%	336	70,41
104	0,02	0,03%	0,01%	182	78,45	222	0,01	0,02%	0,01%	106	75,18
105	0,02	0,03%	0,01%	160	91,95	223	0,12	0,17%	0,05%	220	18,61
106	0,02	0,03%	0,01%	419	70,48	224	0,04	0,05%	0,01%	142	38,69
107	0,51	0,73%	0,20%	850	16,72	225	0,02	0,03%	0,01%	70	39,55
108	19,63	28,25%	7,73%	9723	8,51	226	0,43	0,62%	0,17%	914	21,24
109	0,02	0,03%	0,01%	120	66,30	227	0,02	0,02%	0,01%	140	85,89
110	0,01	0,02%	0,00%	76	62,30	228	0,08	0,11%	0,03%	282	37,01
111	0,07	0,11%	0,03%	322	43,28	229	0,05	0,07%	0,02%	318	64,24
112	0,09	0,13%	0,04%	216	23,66	230	0,05	0,07%	0,02%	160	34,56
113	0,01	0,02%	0,01%	68	48,92	231	0,29	0,41%	0,11%	986	37,44
114	0,02	0,03%	0,01%	80	43,01	232	0,01	0,02%	0,01%	68	48,57
115	0,01	0,02%	0,00%	122	100,00	233	0,09	0,13%	0,03%	240	27,62
116	0,05	0,07%	0,02%	274	52,59	234	0,04	0,05%	0,01%	116	30,93

117	0,02	0,03%	0,01%	112	50,00	235	0,01	0,02%	0,01%	76	57,58
118	0,19	0,28%	0,08%	672	34,73	236	2,05	2,95%	0,81%	1218	6,47
						Media:	0,29		27,58%	6	19,54

Indici geometrici dei patch nella frammentazione del 50% di habitat per il paesaggio del Lamone

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,09	0,17%	0,04%	284	31,00	121	1,36	2,51%	0,53%	3088	28,62
2	0,01	0,02%	0,00%	80	65,04	122	0,07	0,12%	0,03%	392	58,42
3	0,55	1,02%	0,22%	1234	22,51	123	0,02	0,03%	0,01%	92	60,53
4	0,44	0,82%	0,17%	500	11,30	124	0,23	0,43%	0,09%	608	26,45
5	0,02	0,03%	0,01%	102	66,23	125	0,03	0,06%	0,01%	174	51,94
6	0,19	0,35%	0,07%	314	16,65	126	0,01	0,03%	0,01%	108	78,83
7	0,02	0,04%	0,01%	160	68,97	127	0,02	0,04%	0,01%	132	54,32
8	0,06	0,12%	0,03%	182	28,48	128	0,04	0,07%	0,02%	401	40,00
9	0,02	0,05%	0,01%	144	58,06	129	0,02	0,03%	0,01%	66	40,24
10	0,08	0,14%	0,03%	222	29,06	130	0,02	0,04%	0,01%	142	71,36
11	0,03	0,06%	0,01%	146	43,98	131	0,02	0,03%	0,01%	114	76,00
12	0,10	0,19%	0,04%	390	37,86	132	0,02	0,03%	0,01%	154	92,77
13	0,01	0,03%	0,01%	8	77,14	133	0,07	0,13%	0,03%	180	25,42
14	0,02	0,03%	0,01%	96	62,34	134	0,05	0,10%	0,02%	328	60,63
15	0,06	0,11%	0,02%	180	30,46	135	0,01	0,02%	0,01%	102	76,69
16	0,16	0,30%	0,06%	414	25,91	136	0,02	0,03%	0,01%	122	66,30
17	0,08	0,15%	0,03%	162	20,33	137	0,02	0,04%	0,01%	208	96,30
18	0,78	1,44%	0,31%	1470	19,42	138	2,23	4,12%	0,88%	3981	18,47
19	0,41	0,76%	0,16%	666	16,25	139	0,18	0,33%	0,07%	502	28,15
20	0,07	0,13%	0,03%	172	25,29	140	0,04	0,08%	0,02%	328	75,40
21	0,29	0,53%	0,11%	726	25,42	141	0,02	0,03%	0,01%	74	47,74
22	0,25	0,46%	0,10%	622	32,30	142	0,10	0,18%	0,04%	490	49,15
23	0,01	0,02%	0,00%	92	74,19	143	0,51	0,94%	0,20%	1074	23,29
24	0,02	0,03%	0,01%	122	77,71	144	0,01	0,03%	0,01%	82	59,42
25	0,06	0,12%	0,03%	220	34,54	145	0,03	0,06%	0,01%	122	38,24
26	0,30	0,56%	0,12%	1068	35,58	146	0,09	0,17%	0,04%	390	41,45
27	0,17	0,32%	0,07%	706	40,76	147	0,04	0,08%	0,02%	364	81,98
28	0,03	0,06%	0,01%	148	45,40	148	1,50	2,78%	0,59%	3662	24,91
29	0,02	0,04%	0,01%	114	54,55	149	0,34	0,63%	0,13%	1270	30,45
30	0,02	0,03%	0,01%	86	46,74	150	0,03	0,05%	0,01%	156	55,71
31	0,05	0,09%	0,02%	671	51,19	151	0,16	0,29%	0,06%	514	32,66
32	0,02	0,03%	0,01%	102	58,96	152	0,13	0,24%	0,05%	562	43,36
33	0,02	0,04%	0,01%	124	52,10	153	0,13	0,25%	0,05%	410	30,94
34	0,03	0,05%	0,01%	98	37,98	154	2,05	3,79%	0,81%	6850	35,24
35	0,43	0,79%	0,17%	968	24,57	155	0,11	0,21%	0,04%	572	50,53
36	1,85	3,42%	0,73%	3237	29,82	156	0,15	0,27%	0,06%	416	28,18
37	0,04	0,07%	0,01%	210	58,99	157	0,07	0,13%	0,03%	190	26,13

38	0,02	0,04%	0,01%	134	62,62	158	0,40	0,73%	0,16%	412	12,52
39	0,03	0,05%	0,01%	186	64,36	159	0,04	0,07%	0,01%	220	57,74
40	0,04	0,07%	0,02%	236	59,75	160	0,01	0,03%	0,01%	130	95,59
41	0,02	0,04%	0,01%	401	64,89	161	0,02	0,04%	0,01%	150	63,29
42	0,08	0,14%	0,03%	400	53,19	162	0,01	0,02%	0,01%	66	51,16
43	0,08	0,14%	0,03%	248	32,12	163	0,01	0,02%	0,00%	100	81,97
44	0,02	0,03%	0,01%	160	104,50	164	0,03	0,05%	0,01%	214	82,31
45	0.09	0.16%	, 0.04%	506	56.85	165	0.12	, 0.21%	0.05%	614	53.30
46	0.03	0.05%	0.01%	144	52.17	166	0.01	0.02%	0.00%	126	103.20
47	0.05	0.09%	0.02%	206	41 62	167	0.03	0.06%	0.01%	182	56 17
48	0.64	1 19%	0.25%	1338	20.80	168	0.02	0.03%	0.01%	134	75 71
49	0.15	0.28%	0.06%	582	39.06	169	0.06	0.11%	0.02%	224	36.66
50	0.02	0.04%	0.01%	134	63 81	170	0.01	0.02%	0.01%	110	85 94
50	0.01	0.02%	0.01%	86	64 66	171	0.10	0.18%	0.04%	496	52 10
52	0.05	0,0270	0,01%	160	22 50	171	0,10	0,10%	0,04%	450 72	50 02
52	0,05	0,09%	0,02%	246	32,39	172	0,01	0,02%	0,00%	72	39,02
55	0,00	0,12%	0,02%	240	27 20	173	0,07	0,13%	0,0376	202	50,05
54	0,07	0,12/0	0,03%	140	57,29 77.09	174	0,05	0,00%	0,01%	210	24.04
55	0,02	0,04%	0,01%	140	77,00	175	0,09	0,10%	0,05%	290	54,01 42.70
50	0,03	0,05%	0,01%	190	70,76	170	0,12	0,23%	0,05%	54Z	43,78
57	0,02	0,03%	0,01%	96	54,55	177	0,04	0,07%	0,01%	194	54,49
58	0,06	0,10%	0,02%	256	45,39	1/8	0,02	0,03%	0,01%	106	60,92
59	0,04	0,08%	0,02%	232	53,46	179	0,02	0,03%	0,01%	148	84,57
60	0,30	0,55%	0,12%	1222	41,37	180	0,04	0,07%	0,01%	152	40,32
61	0,38	0,/1%	0,15%	612	24,21	181	0,03	0,06%	0,01%	126	37,50
62	0,09	0,17%	0,04%	214	23,34	182	0,02	0,03%	0,01%	98	54,14
63	0,03	0,06%	0,01%	162	46,69	183	0,07	0,12%	0,03%	278	42,70
64	0,02	0,03%	0,01%	160	94,67	184	0,04	0,08%	0,02%	118	28,92
65	0,26	0,48%	0,10%	772	29,95	185	0,40	0,75%	0,16%	1108	29,47
66	0,02	0,03%	0,01%	132	83,02	186	0,01	0,02%	0,01%	70	52,63
67	0,02	0,03%	0,01%	76	50,00	187	0,04	0,08%	0,02%	134	31,09
68	0,03	0,06%	0,01%	116	35,05	188	0,23	0,43%	0,09%	276	11,87
69	0,45	0,83%	0,18%	494	11,06	189	0,18	0,33%	0,07%	310	17,36
70	0,02	0,03%	0,01%	104	60,82	190	0,29	0,53%	0,11%	748	26,58
71	0,02	0,04%	0,01%	128	62,44	191	0,01	0,02%	0,01%	80	61,54
72	0,02	0,05%	0,01%	86	35,25	192	0,23	0,42%	0,09%	722	31,95
73	0,02	0,04%	0,01%	110	48,46	193	0,03	0,05%	0,01%	120	42,86
74	0,05	0,09%	0,02%	186	36,47	194	0,05	0,10%	0,02%	160	30,08
75	0,08	0,15%	0,03%	252	31,50	195	0,02	0,04%	0,01%	88	36,36
76	0,02	0,03%	0,01%	80	52,29	196	0,06	0,10%	0,02%	220	39,01
77	0,02	0,04%	0,01%	92	40,00	197	2,23	4,13%	0,88%	3582	16,82
78	0,13	0,25%	0,05%	304	22,72	198	0,02	0,04%	0,01%	126	54,08
79	0,24	0,45%	0,10%	514	26,24	199	0,11	0,20%	0,04%	328	29,76
80	0,03	0,05%	0,01%	108	37,24	200	0,02	0,04%	0,01%	114	52,29
81	0,01	0,03%	0,01%	126	90,00	201	0,45	0,83%	0,18%	922	22,63
82	0,04	0,08%	0,02%	324	72,48	202	0,01	0,02%	0,00%	78	63,93
83	0,02	0,03%	0,01%	116	63,39	203	5,42	10,04%	2,13%	6478	14,36
84	0,09	0,16%	0,03%	396	45,26	204	0,04	0,08%	0,02%	148	33,64

85	0,02	0,03%	0,01%	124	67,39	205	0,17	0,32%	0,07%	482	28,17
86	0,04	0,07%	0,01%	128	36,06	206	0,02	0,04%	0,01%	92	47,92
87	0,02	0,03%	0,01%	116	67,44	207	0,15	0,27%	0,06%	354	23,84
88	0,02	0,04%	0,01%	90	46,15	208	0,25	0,46%	0,10%	586	23,44
89	0,02	0,04%	0,01%	118	57,28	209	0,11	0,21%	0,05%	436	38,08
90	0,01	0,02%	0,01%	78	60,00	210	0,03	0,05%	0,01%	242	84,62
91	0,01	0,03%	0,01%	112	80,00	211	0,11	0,21%	0,04%	456	41,12
92	0,20	0,38%	0,08%	654	32,25	212	0,13	0,24%	0,05%	514	39,15
93	0,08	0,15%	0,03%	448	54,11	213	0,14	0,26%	0,06%	392	27,76
94	0,08	0,15%	0,03%	388	48,08	214	0,24	0,44%	0,09%	378	16,00
95	0,04	0,07%	0,02%	288	72,36	215	0,02	0,04%	0,01%	376	65,70
96	13,49	24,98%	5,31%	8100	9,41	216	0,04	0,08%	0,02%	110	25,76
97	0,05	0,10%	0,02%	264	51,06	217	0,03	0,05%	0,01%	152	58,91
98	0,08	0,15%	0,03%	214	26,16	218	0,07	0,13%	0,03%	198	29,16
99	0,75	1,39%	0,30%	3006	35,26	219	0,01	0,02%	0,01%	76	58,91
100	0,03	0,06%	0,01%	198	63,06	220	0,59	1,09%	0,23%	984	16,75
101	0,02	0,04%	0,01%	182	78,45	221	0,02	0,03%	0,01%	100	66,67
102	0,02	0,04%	0,01%	144	69,23	222	0,07	0,13%	0,03%	384	52,82
103	0,48	0,89%	0,19%	816	17,04	223	0,07	0,13%	0,03%	308	44,38
104	0,02	0,03%	0,01%	120	66,30	224	0,03	0,05%	0,01%	228	77,82
105	0,01	0,02%	0,00%	76	62,30	225	0,79	1,47%	0,31%	1670	21,10
106	0,03	0,05%	0,01%	114	41,76	226	0,02	0,04%	0,01%	336	70,41
107	0,04	0,08%	0,02%	232	56,86	227	0,01	0,03%	0,01%	106	75,18
108	0,08	0,16%	0,03%	188	22,25	228	0,03	0,05%	0,01%	114	44,71
109	0,04	0,08%	0,02%	166	37,99	229	0,02	0,03%	0,01%	70	39,55
110	0,01	0,03%	0,01%	68	48,92	230	0,03	0,06%	0,01%	162	47,37
111	0,02	0,03%	0,01%	80	43,01	231	0,05	0,09%	0,02%	318	64,24
112	0,01	0,02%	0,00%	122	100,00	232	0,05	0,09%	0,02%	160	34,56
113	0,04	0,07%	0,01%	214	57,22	233	0,05	0,10%	0,02%	130	25,00
114	0,05	0,10%	0,02%	274	52,59	234	0,18	0,33%	0,07%	260	14,59
115	0,02	0,04%	0,01%	112	50,00	235	0,17	0,32%	0,07%	494	33,76
116	0,17	0,32%	0,07%	636	36,38	236	0,09	0,16%	0,03%	240	27,62
117	0,02	0,03%	0,01%	280	54,95	237	0,04	0,07%	0,01%	116	30,93
118	0,02	0,04%	0,01%	144	63,72	238	1,79	3,31%	0,70%	1098	6,73
119	0,09	0,16%	0,04%	320	35,91	239	0,05	0,09%	0,02%	136	28,81
120	0,07	0,13%	0,03%	434	63,17	Media:	0,23		21,52%	5	22,18

APPENDICE L

Abbondanze della metapopolazione (N) attraverso il tempo (espresso in anni) per il paesaggio del Lamone negli scenari di cambiamento dell'habitat. Le curve indicano le abbondanze medie, gli intervalli mostrano le abbondanze corrispondenti a \pm 1 di deviazione standard e i pallini rossi le abbondanze minime e massime di tutte le repliche. Tutti i valori per ogni intervallo temporale sono elencati sotto i grafici.

Abbondanze della metapopolazione nella perdita del 25% di habitat per il paesaggio del Lamone

Tempo			Abbond	anza		Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	3348	3348	3348	3348	3348	27	822	1533,6	2197	2860,4	4202
1	2778	3076,9	3512	3947,1	5169	28	849	1507,8	2128	2748,2	3606
2	2482	2980,3	3556	4131,7	5404	29	884	1452,1	2069	2685,9	3684
3	2386	2948,3	3522	4095,7	5913	30	768	1434,2	2040	2645,8	3982
4	2367	2704,8	3436	4167,2	7694	31	708	1458	2038	2618	3595
5	2145	2625,1	3383	4140,9	6777	32	717	1414,6	2027	2639,4	3748
6	2028	2572,5	3284	3995,5	6732	33	698	1391	2005	2619	3701
7	1778	2466,3	3235	4003,7	6564	34	825	1384,2	1970	2555,8	3456
8	2008	2383,5	3079	3774,5	6189	35	801	1391,5	1969	2546,5	3483
9	1891	2282,5	2965	3647,5	6326	36	722	1384	1960	2536	3456
10	1805	2257,8	2936	3614,2	5600	37	710	1398,8	1961	2523,2	3424
11	1812	2262,7	2884	3505,3	5550	38	684	1398,9	1975	2551,1	3737
12	1656	2192	2811	3430	5226	39	847	1395,7	1964	2532,3	3714
13	1479	2135	2789	3443	5056	40	815	1217,7	1947	2676,3	6602
14	1418	2135,3	2738	3340,7	4535	41	767	1314,9	1901	2487,1	3362
15	1352	2044,8	2672	3299,2	4826	42	806	1324,9	1891	2457,1	3683
16	1447	1982,4	2652	3321,6	4811	43	786	1352,3	1887	2421,7	3135

17	1428	1917	2552	3187	4502	44	741	1310.9	1901	2491.1	3494
18	1370	1864,5	2472	3079,5	4102	45	781	1313,7	1854	2394,3	3370
19	1290	1824,1	2472	3119,9	4304	46	943	1287,5	1844	2400,5	3582
20	1142	1761,3	2429	3096,7	4201	47	875	1261,8	1852	2442,2	3916
21	1034	1745,9	2415	3084,1	4545	48	783	1244,5	1851	2457,5	3728
22	1038	1676,9	2382	3087,1	4723	49	737	1242,3	1797	2351,7	3503
23	964	1655,9	2345	3034,1	4449	50	634	1220,1	1764	2307,9	3135
24	1027	1622	2298	2974	4721						
25	869	1598,3	2272	2945,7	4902	Pe	rcentili de	ll'abbonda	anza meo	dia totale f	finale
26	884	1582,4	2213	2843,6	3888		5th	25th	50th	75th	95th
						50	978,85	1397,8	1729	2157,5	2575,1

Abbondanze della metapopolazione nella perdita del 50% di habitat per il paesaggio del Lamone

Tempo			Abbond	anza		Tempo			Abbond	lanza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	2619	2619	2619	2619	2619	27	1020	1350,9	1747	2143,1	2815
1	2082	2453,6	2726	2998,4	3344	28	1035	1330,7	1705	2079,3	2588
2	2000	2383,6	2827	3270,4	4096	29	1008	1274,5	1655	2035,5	2966
3	1877	2335,9	2820	3304,1	4600	30	986	1257,2	1610	1962,8	2601
4	1909	2274,6	2757	3239,4	4173	31	870	1202	1585	1968	2759
5	1773	2234,6	2754	3273,4	4209	32	915	1200,5	1564	1927,5	2468
6	1671	2088,1	2709	3329,9	5583	33	909	1182,3	1572	1961,7	2549
7	1440	2065,5	2622	3178,5	4275	34	798	1167,1	1558	1948,9	2519
8	1357	2025	2582	3139	4649	35	864	1173,9	1557	1940,1	2600
9	1241	1931,7	2481	3030,3	4102	36	740	1163	1543	1923	2545
10	1212	1895,6	2380	2864,4	3737	37	722	1161	1544	1927	2821
11	1198	1856,9	2321	2785,1	3560	38	732	1159	1546	1933	2587
12	1150	1736,7	2247	2757,3	3553	39	638	1154,2	1543	1931,8	2679

13	1144	1675,3	2172	2668,7	3590	40	658	1141,7	1521	1900,3	2742
14	1171	1644,9	2142	2639,1	3535	41	681	1119	1497	1875	2724
15	1146	1613	2079	2545	3438	42	790	1104,8	1493	1881,2	2656
16	1026	1608,8	2058	2507,2	3354	43	813	1090,8	1455	1819,2	2702
17	1106	1593	2000	2407	3541	44	834	1081,7	1457	1832,3	2964
18	1023	1558,2	1965	2371,8	3160	45	739	1051,3	1417	1782,7	2748
19	993	1539,1	1945	2350,9	2980	46	745	1031,9	1380	1728,1	2849
20	1089	1507,3	1922	2336,7	3385	47	741	1050,6	1383	1715,4	2644
21	1178	1485,8	1899	2312,2	3404	48	770	1067,9	1393	1718,1	2626
22	1174	1441,5	1880	2318,5	3379	49	809	1060,2	1388	1715,8	2456
23	1050	1427,6	1850	2272,4	3328	50	790	1070,3	1386	1701,7	2169
24	1139	1427,8	1832	2236,2	3230						
25	976	1392,5	1801	2209,5	3527	Pe	rcentili de	ll'abbonda	anza meo	dia totale f	inale
26	1037	1359,8	1773	2186,2	2889		5th	25th	50th	75th	95th
						50	842,75	1167,8	1373	1639,5	1862,5

Abbondanze della metapopolazione nella frammentazione del 25% di habitat per il paesaggio del Lamone

Tempo		Abbondanza Min. -1 S.D. Media +1 S.D. Ma 3341 3341 3341 3341 33 2606 3105,7 3544 3982,3 48				Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	3341	3341	3341	3341	3341	27	768	1504,8	2106	2707,2	4256
1	2606	3105,7	3544	3982,3	4845	28	865	1451	2107	2763	5137
2	2500	3039,7	3585	4130,3	5065	29	939	1474,5	2068	2661,5	4311
3	2523	2950,6	3562	4173,4	4995	30	968	1460,1	1996	2531,9	3493
4	2315	2869,8	3505	4140,2	5156	31	948	1469	1974	2479	3540
5	2078	2786,1	3437	4087,9	5527	32	882	1464,6	1971	2477,4	3142
6	1906	2705,6	3332	3958,4	5364	33	991	1430	1937	2444	3528
7	1893	2524,1	3187	3849,9	5996	34	1017	1420,9	1953	2485,1	3433

8	1706	2433	3098	3763	5858	35	1042	1403,3	1910	2416,7	3781
9	1616	2289,4	2974	3658,6	5964	36	1069	1343,4	1918	2492,6	3921
10	1620	2197,6	2896	3594,4	6034	37	1030	1300,9	1899	2497,1	4167
11	1633	2059,5	2821	3582,5	7046	38	956	1277,1	1902	2526,9	4418
12	1392	2080,9	2703	3325,1	5349	39	949	1150,2	1903	2655,8	6697
13	1308	2026,6	2655	3283,4	4763	40	901	1177,1	1868	2558,9	6325
14	1114	1930,5	2601	3271,5	5571	41	896	1251,6	1867	2482,4	5069
15	1090	1886,2	2599	3311,8	4797	42	928	1238,2	1859	2479,8	4565
16	1050	1856	2542	3228	4346	43	858	1248,7	1875	2501,3	4288
17	973	1822,3	2501	3179,7	4634	44	816	1267,6	1825	2382,4	3768
18	1026	1788,1	2457	3125,9	4344	45	805	1276,7	1833	2389,3	3598
19	960	1789	2447	3105	4138	46	898	1280	1798	2316	3282
20	914	1778,2	2378	2977,8	3809	47	803	1236,7	1770	2303,3	4008
21	978	1706,4	2358	3009,6	4595	48	767	1205,5	1736	2266,5	4098
22	972	1682,2	2319	2955,8	4116	49	773	1214,8	1727	2239,2	3618
23	1080	1658,7	2303	2947,3	4710	50	804	1197,7	1737	2276,3	3405
24	947	1631,6	2241	2850,4	4686						
25	1095	1593,5	2192	2790,5	4496	Per	centili de	ll'abbond	anza med	ia totale f	inale
26	960	1544,9	2164	2783,1	4465		5th	25th	50th	75th	95th
						50	969,5	1387,3	1674,5	1951,3	2886,6

Abbondanze della metapopolazione nella frammentazione del 50% di habitat per il paesaggio del Lamone

Tempo			Abbond	anza		Tempo	Abbondanza				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	2597	2597	2597	2597	2597	27	893	1282,7	1662	2041,3	2761
1	2066	2396,1	2721	3045,9	3736	28	933	1218,5	1667	2115,5	3082
2	1906	2357,7	2763	3168,3	3978	29	908	1199,4	1665	2130,6	3345
3	1792	2291,2	2759	3226,8	3965	30	831	1173,7	1653	2132,3	3818
4	1852	2245,6	2688	3130,4	4180	31	766	1162	1609	2056	3658
5	1655	2156,3	2617	3077,7	4139	32	727	1158,6	1626	2093,4	2938
6	1523	2058,1	2519	2979,9	4555	33	610	1130,6	1616	2101,4	3141
7	1573	2020,5	2486	2951,5	3853	34	585	1080,5	1589	2097,5	3534
8	1494	1892	2355	2818	3554	35	683	1099,2	1575	2050,8	3147
9	1448	1856,2	2336	2815,8	3571	36	703	1099,4	1548	1996,6	2915
10	1359	1775,3	2277	2778,7	4103	37	733	1060,7	1515	1969,3	2832
11	1288	1725,3	2241	2756,7	3665	38	735	998,7	1501	2003,3	3540
12	1217	1662	2158	2654	3725	39	701	1022,2	1484	1945,8	2791
13	1171	1593,8	2085	2576,2	3807	40	796	1026	1457	1888	2950
14	1186	1572,4	2051	2529,6	3505	41	734	980,7	1445	1909,3	3232
15	1156	1558,6	2016	2473,4	3214	42	644	1007,1	1427	1846,9	3244
16	1060	1538,4	1980	2421,6	3197	43	689	984,8	1406	1827,2	3025
17	1093	1510,1	1955	2399,9	3104	44	571	977,9	1371	1764,1	2641
18	957	1460,7	1894	2327,3	3205	45	537	989,7	1373	1756,3	2680
19	933	1423,5	1871	2318,5	3126	46	552	981,5	1336	1690,5	2356
20	876	1382,2	1861	2339,8	4325	47	548	928,8	1328	1727,2	2730
21	1043	1341,5	1850	2358,5	3987	48	565	920,4	1320	1719,6	2258
22	965	1366,3	1805	2243,7	3114	49	537	899,2	1314	1728,8	2304
23	982	1333,1	1759	2184,9	3099	50	555	893,6	1326	1758,4	2814
24	998	1312,2	1733	2153,8	2865	5					
25	1005	1279,9	1713	2146,1	3303	Pero	Percentili dell'abbondanza media totale finale				inale
26	914	1258,9	1687	2115,1	3307		5th	25th	50th	75th	95th
						50	740	1038,8	1277	1564	1965,8

APPENDICE M

Numero delle popolazioni presenti attraverso il tempo (espresso in anni) per il paesaggio del Lamone negli scenari di cambiamento dell'habitat. Le curve indicano il numero medio delle popolazioni presenti, gli intervalli mostrano il numero delle popolazioni corrispondenti a \pm 1 di deviazione standard e i pallini rossi il numero delle popolazioni minimo e massimo di tutte le repliche. Tutti i valori per ogni intervallo temporale sono elencati sotto i grafici.

Occupancy della metapopolazione nella perdita del 25% di habitat per il paesaggio del Lamone

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	184	184	184	184	184	26	93	118,3	133,2	148,1	163
1	158	163	167,3	171,6	177	27	89	117	132	147	163
2	153	160,3	165,5	170,7	178	28	84	116	131,6	147,2	166
3	150	158,6	164	169,4	178	29	86	114	130,1	146,3	158
4	147	157,3	162,8	168,3	174	30	86	112,5	128,9	145,3	161
5	143	155,1	161,6	168,1	177	31	83	111,2	127,9	144,7	164
6	140	153,2	159,9	166,6	178	32	82	111	127,5	144	159
7	132	151,4	158,7	166	177	33	84	110,4	126,4	142,4	158
8	132	148,4	156,4	164,4	173	34	86	108,7	125,5	142,3	162
9	133	146,8	155,3	163,8	174	35	83	107,6	124,4	141,2	158
10	132	144,8	153,9	163	174	36	79	106,5	123,2	139,9	161
11	133	142,7	151,8	160,9	176	37	67	106,4	123,2	140	161
12	125	141,2	150,3	159,4	172	38	68	105,4	121,8	138,2	162
13	124	140,1	149,1	158,1	172	39	70	104,9	121,4	137,9	166
14	115	138,1	148,1	158,1	170	40	73	103,3	120,6	137,9	166
15	122	136,4	146,4	156,4	166	41	71	102,8	120,4	138,1	169
16	122	135.2	145 4	155.6	167	42	70	102.2	120.2	138.2	161

17	115	134	144,6	155,2	168	43	69	102,7	120,4	138,2	155
18	116	132	143,2	154,4	167	44	70	102,3	120	137,7	155
19	114	129,9	141,5	153,1	165	45	72	101,6	119,4	137,2	155
20	113	128,2	140	151,8	167	46	78	101,2	118,7	136,2	151
21	105	126,7	138,8	150,9	168	47	73	100,3	118,4	136,6	149
22	105	124,9	137,9	150,9	165	48	71	99,7	117,4	135,1	151
23	98	123,6	137,1	150,6	163	49	70	99,6	116,8	134	148
24	95	121,5	135,6	149,7	168	50	69	98,7	115,8	132,9	147
25	89	120,5	135,4	150,3	170						

Occupancy della metapopolazione nella perdita del 50% di habitat per il paesaggio del Lamone

Tempo		Popolaz	ioni occu	apte		Tempo	Popolazioni occuapte				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	178	178	178	178	178	26	98	109,9	123	136,1	147
1	146	155,6	159,6	163,6	168	27	94	108,4	122,1	135,8	153
2	140	150,9	155,9	160,9	168	28	96	108,8	121,4	134	151
3	135	147,6	154	160,4	168	29	92	107,1	119,9	132,7	150
4	135	145,3	152,4	159,5	168	30	90	105,7	119,1	132,5	150
5	129	143,3	151,1	158,9	165	31	92	104,9	117,8	130,7	150
6	125	142,9	150,6	158,4	165	32	86	103,1	115,5	127,9	140
7	122	140,6	149	157,4	170	33	81	101,8	114,7	127,6	139
8	124	139,3	147,9	156,5	166	34	83	101,4	114,3	127,2	143
9	122	137,2	146,3	155,4	168	35	89	100,5	113,9	127,3	145
10	124	135,6	144,6	153,6	162	36	79	99,1	112,6	126,1	143
11	116	132,9	142,9	152,9	163	37	82	99	112,4	125,8	141
12	111	129,7	140,5	151,3	164	38	78	99	112	125	144
13	114	128	138,8	149,6	162	39	68	98,1	112	125,9	143
14	108	127	138	149	158	40	74	97,9	111,7	125,5	142

15	105	124,3	135,7	147,1	156	41	70	96,2	110,1	124	136
16	105	123,1	134,5	145,9	159	42	67	95,1	109	122,9	138
17	104	120,5	133	145,5	158	43	75	94,1	107,7	121,3	142
18	101	119,1	132	144,9	157	44	77	92,7	106,5	120,3	138
19	97	116,9	130	143,1	155	45	71	92,4	106	119,6	137
20	98	118	130,4	142,7	151	46	71	91,8	105	118,1	133
21	104	117	129,3	141,6	150	47	71	90,8	104,4	118,1	136
22	103	115,2	127,8	140,4	150	48	70	90,1	104,1	118,1	136
23	100	113,5	125,8	138,1	150	49	67	89,8	102,9	116	133
24	99	113,6	125,8	138,1	153	50	66	89,6	102,8	115,9	131
25	97	110,6	123,8	137	150						

Occupancy della metapopolazione nella frammentazione del 25% di habitat per il paesaggio del Lamone

Tempo		Popolaz	ioni occu	pate		Tempo	Popolazioni occupate				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	236	236	236	236	236	26	104	146	162,6	179,3	191
1	199	207,8	211,8	215,8	219	27	98	143,9	160,9	177,9	191
2	193	201,5	206,2	210,9	216	28	90	143	159,9	176,8	191
3	186	197,2	203,2	209,2	215	29	95	141,6	158,5	175,4	193
4	180	194,5	202	209,5	220	30	96	138,6	156,2	173,8	198
5	181	193,2	200,7	208,2	216	31	94	137,2	155,1	173	191
6	169	189,3	197,7	206,1	216	32	88	135,2	153,5	171,8	198
7	177	187,6	196	204,4	213	33	92	134,6	152,9	171,2	196
8	169	184,8	194,4	204	212	34	95	134,6	152,6	170,6	184
9	163	181,5	192,3	203,2	213	35	99	132,7	151,3	169,9	191
10	164	179,4	190	200,6	211	36	102	131,7	150	168,3	190
11	155	177	187,8	198,6	207	37	109	130	148,6	167,2	196

12	153	173,8	185,2	196,6	210	38	105	128,4	147,6	166,9	187
13	147	170,1	181,9	193,7	206	39	101	126,5	146,3	166,1	187
14	140	167,2	180,2	193,2	205	40	102	125,6	145,7	165,8	189
15	140	165,1	178,3	191,5	206	41	100	125,8	146	166,2	188
16	138	162,9	176,7	190,5	208	42	103	126,2	145,6	165	187
17	135	161,6	176,1	190,6	209	43	100	125,3	144,8	164,3	181
18	124	157,9	173,2	188,4	208	44	103	125,4	144,1	162,8	183
19	120	155,4	171,1	186,8	210	45	101	124,9	144	163,1	194
20	117	152,9	169,5	186,1	203	46	94	124,7	143	161,3	183
21	114	153,2	169,8	186,4	211	47	97	123,7	142,3	161	179
22	115	151,3	167,7	184,1	199	48	96	121,9	141,3	160,7	179
23	103	150	167,1	184,2	203	49	93	120,8	140,1	159,4	179
24	104	149,2	165,4	181,5	197	50	87	118,9	139,4	159,8	183
25	107	148	164,4	180,8	194						

Occupancy della metapopolazione nella frammentazione del 50% di habitat per il paesaggio del Lamone

Tempo		Popolaz	ioni occu	pate		Tempo	Popolazioni occupate				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	239	239	239	239	239	26	104	130,3	147,9	165,4	197
1	197	205	210,4	215,8	221	27	103	129	146,9	164,8	190
2	184	195,6	201,6	207,6	214	28	96	126,7	144,7	162,7	184
3	183	190,4	197,2	204	212	29	87	125,2	143,4	161,6	179
4	172	186,6	193,9	201,2	213	30	87	124,3	143	161,7	185
5	170	182,9	190,4	197,9	210	31	89	123,6	142,3	161	184
6	166	178,4	187,5	196,6	207	32	81	121,9	140,7	159,5	184
7	165	175	184,9	194,8	210	33	81	119,5	139,4	159,3	188
8	152	171,2	181,8	192,4	220	34	81	118,9	138,7	158,5	186

9	144	168,1	179,1	190,1	207	35	86	117	136,7	156,4	184
10	131	164,6	176,8	189	204	36	74	115,8	135,7	155,6	186
11	118	161,8	175,3	188,8	207	37	74	114,4	134,7	155	177
12	116	159,8	173,1	186,4	200	38	76	112,7	133,3	153,9	180
13	123	156,9	170,5	184,1	198	39	67	110,3	132,2	154,1	186
14	121	153,8	168,2	182,6	201	40	79	110,3	131,1	151,9	185
15	112	150,4	165,8	181,3	196	41	72	109,9	130,7	151,4	191
16	119	148,7	163,1	177,5	193	42	70	109,2	130,2	151,2	189
17	128	147,6	162,2	176,8	194	43	68	106,7	127,4	148,1	188
18	125	144,8	160	175,2	192	44	67	106,1	127,1	148,1	191
19	116	142,8	158,7	174,5	197	45	68	104,3	126,1	147,9	186
20	114	141,2	157,4	173,6	195	46	66	104,3	125,4	146,6	182
21	117	138,7	155,1	171,5	195	47	65	102,6	124,4	146,2	189
22	118	138,2	154,4	170,6	197	48	64	100,5	122,4	144,3	190
23	117	136,9	153,2	169,5	199	49	59	99,8	122	144,2	189
24	115	133,3	150,5	167,7	201	50	60	99,5	121,2	142,9	182
25	113	132,8	149,9	167	198						

APPENDICE N

Mappa delle metapopolazioni di inizio simulazione negli scenari di cambiamento dell'habitat per il paesaggio di Viterbo. I cerchi rappresentano le popolazioni con un diametro proporzionale alla carrying capacity. Le linee che uniscono le popolazioni indicano dispersione tra le due popolazioni.

Mappa delle metapopolazioni con la perdita del 25% di habitat per il paesaggio di Viterbo

Mappa delle metapopolazioni con la perdita del 50% di habitat per il paesaggio di Viterbo

Mappa delle metapopolazioni con la frammentazione del 25% di habitat per il paesaggio di Viterbo

Mappa delle metapopolazioni con la frammentazione del 50% di habitat per il paesaggio di Viterbo

APPENDICE O

Valori totali di habitat suitability (Total HS) per ogni patch e valori di carrying capacity (K) e initial abundance (Init. abund.) patch-specifici per il paesaggio di Viterbo negli scenari di cambiamento dell'habitat. Alla fine delle tabelle sono riportati i valori totali di questi parametri, relativi a tutto il paesaggio.

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	5317	44	26	55	1796	15	9
2	410	4	2	56	487	4	3
3	222	2	1	57	264	3	2
4	765	7	4	58	1745	15	9
5	198	2	1	59	153	1	1
6	232	2	1	60	173	2	1
7	2140	18	11	61	420	4	2
8	1962	17	10	62	316	3	2
9	1036	9	5	63	642	6	3
10	2238	19	11	64	360	3	2
11	302	3	2	65	409	4	2
12	227	2	1	66	669	6	4
13	1123	9	5	67	1098	9	6
14	1718	15	9	68	299	3	2
15	2889	24	14	69	569	5	3
16	234	2	1	70	192	2	1
17	1614	13	8	71	227	2	1
18	241	2	1	72	186	2	1
19	1302	11	7	73	310	3	2
20	636	5	3	74	227	2	1
21	48376	398	232	75	407	4	2
22	1956	16	10	76	2067	17	10
23	410	4	2	77	282	3	2
24	975	8	5	78	1836	16	9
25	3233	27	16	79	20656	170	99
26	165	2	1	80	268	3	2
27	7197	59	35	81	3253	27	16
28	454	4	2	82	309	3	2
29	1416	12	7	83	203	2	1
30	161	1	1	84	29085	239	139
31	1676	14	8	85	1410	12	7
32	301	3	2	86	3597	30	18
33	715	6	4	87	344	3	2

HS, numerosità (Init. abund.) e carrying capacity (K) nella perdita del 25% di habitat per il paesaggio di Viterbo

34	705	6	4	88	980	8	5
35	4541	38	22	89	17731	147	86
36	416	3	2	90	256	2	2
37	15518	128	74	91	2976	25	15
38	8898	73	43	92	1725	15	9
39	461	4	2	93	173	2	1
40	449	4	2	94	424	4	2
41	170	2	1	95	1055	9	5
42	683	6	4	96	751	7	4
43	1911	16	10	97	6530	54	31
44	484	4	3	98	628	6	3
45	1166	10	6	99	1025	9	5
46	10191	84	49	100	301	3	2
47	971	8	5	101	893	8	5
48	208	2	1	102	1075	9	6
49	163	2	1	103	404	4	2
50	1971	16	9	104	1036	9	5
51	1083	9	6	105	1545	13	8
52	182	2	1	106	2154	18	11
53	201	2	1	107	202	2	1
54	1226	11	6	108	144	1	1
				SUM:	259705	2172	1275

HS, numerosità (Init. abund.) e carrying capacity (K) nella perdita del 50% di habitat per il paesaggio di Viterbo

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	1107	10	6	24	407	4	2
2	198	2	1	25	2067	17	10
3	2140	18	11	26	1836	16	9
4	1962	17	10	27	268	3	2
5	1036	9	5	28	3253	27	16
6	7891	65	38	29	309	3	2
7	1090	9	5	30	24906	205	119
8	1212	10	6	31	192	2	1
9	1565	13	8	32	3401	28	16
10	1302	11	7	33	3597	30	18
11	30839	254	148	34	344	3	2
12	2865	24	14	35	2976	25	15
13	173	2	1	36	173	2	1
14	872	7	4	37	424	4	2
15	360	3	2	38	1055	9	5
16	264	3	2	39	751	7	4
17	1098	9	6	40	628	6	3
18	192	2	1	41	1025	9	5

19	227	2	1	42	301	3	2
20	11314	93	54	43	275	3	2
21	186	2	1	44	1036	9	5
22	310	3	2	45	2154	18	11
23	227	2	1	46	144	1	1
				SUM:	119952	1004	587

HS, numerosità (Init. abund.) e carrying capacity (K) nella frammentazione del 25% di habitat per il paesaggio di Viterbo

Patch	Total	К	Init.	Patch	Total	к	Init.
	HS		abund.		HS		abund
1	176	2	1	109	7541	62	36
2	305	3	2	110	185	2	1
3	626	5	3	111	1608	13	8
4	596	5	3	112	917	8	4
5	235	2	1	113	152	1	1
6	143	1	1	114	1032	8	5
7	645	6	3	115	739	6	4
8	659	5	3	116	756	7	4
9	326	3	2	117	176	2	1
10	282	2	1	118	137	1	1
11	583	5	3	119	744	6	4
12	232	2	1	120	462	4	2
13	1682	14	8	121	208	2	1
14	1580	13	8	122	139	1	1
15	997	9	5	123	364	3	2
16	539	4	3	124	244	2	2
17	262	2	1	125	262	2	1
18	359	3	2	126	444	4	2
19	813	7	4	127	15127	124	72
20	789	7	4	128	163	2	1
21	354	3	2	129	169	2	1
22	6930	57	33	130	1343	11	6
23	242	2	2	131	1064	9	5
24	382	4	2	132	201	2	1
25	133	1	1	133	857	7	4
26	219	2	1	134	541	5	3
27	1984	17	10	135	949	8	5
28	405	4	2	136	485	4	3
29	7572	62	36	137	235	2	1
30	313	3	2	138	165	1	1
31	324	3	2	139	1372	12	7
32	190	2	1	140	153	1	1
33	163	1	1	141	690	6	3

34	197	2	1	142	273	2	1
35	201	2	1	143	173	2	1
36	4083	34	20	144	1324	11	6
37	1256	11	6	145	360	3	2
38	1747	15	9	146	146	1	1
39	1466	12	7	147	218	2	1
40	409	3	2	148	277	3	2
41	1015	8	5	149	1098	9	6
42	1507	13	7	150	176	1	1
43	396	3	2	151	190	2	1
44	653	5	3	152	569	5	3
45	1048	9	5	153	262	2	1
46	5848	48	28	154	192	2	1
47	5219	43	25	155	3147	26	15
48	410	4	2	156	227	2	1
49	228	2	1	157	709	6	3
50	700	6	3	158	766	6	4
51	274	3	2	159	7293	60	35
52	975	8	5	160	186	2	1
53	2427	20	12	161	310	3	2
54	1380	12	7	162	227	2	1
55	166	1	1	163	407	4	2
56	165	2	1	164	282	3	2
57	454	4	2	165	1022	9	5
58	2482	20	12	166	870	7	4
59	277	3	2	167	1912	16	9
60	350	3	2	168	1720	15	9
61	615	5	3	169	1569	13	8
62	161	1	1	170	193	2	1
63	769	7	4	171	206	2	1
64	256	2	2	172	309	3	2
65	172	1	1	173	3138	26	15
66	263	3	2	174	4412	36	21
67	715	6	4	175	1256	11	6
68	705	6	4	176	5/5	5	3
69	453	4	2	1//	3043	25	15
70	1816	15	9	178	1116	9	5
71	193	2	1	179	203	2	1
72	8728	72	42	180	8320	69 F	40
73	522	5	2	101	528 220	5 1	3
74	029	5 7	С 1	102	239	2	т Г
75	201	2	1 2	107	207	2	נ ז
70 77	57/	5	2	104 105	544 620	5 5	2
70	J74 //57	ر ۸	5 7	186	3365	20	5 16
70	4020 2020	+ ∆1	2 24	187	268	20 2	2
29 80	487	41 4	27 2	188	181	2	<u>د</u> 1
	702	T	5	100	101	2	÷

8	1 2467	20	12	189	349	3	2
8	2 460	4	2	190	2508	21	12
8	3 309	3	2	191	739	6	4
8	4 165	1	1	192	173	2	1
8	5 3070	25	15	193	332	3	2
8	6 133	1	1	194	3028	25	15
8	7 2310) 19	11	195	424	4	2
8	8 872	8	5	196	7702	64	37
8	9 163	1	1	197	276	3	2
9	0 3508	29	17	198	3342	28	16
9	1 435	4	2	199	310	3	2
9	2 490	4	2	200	1021	8	5
9	3 208	2	1	201	200	2	1
9	4 170	2	1	202	180	2	1
9	5 2633	22	13	203	963	8	5
9	6 355	3	2	204	1042	9	5
9	7 3155	26	15	205	301	3	2
9	8 844	7	4	206	893	8	5
9	9 704	6	4	207	1075	9	6
10	00 1911	. 16	10	208	600	5	3
10	1 728	6	4	209	1036	9	5
10	569	5	3	210	1479	13	7
10)3 1131	0 93	54	211	779	6	4
10	186 186	2	1	212	459	4	3
10	95 484	4	3	213	202	2	1
10	6 493	4	2	214	188	2	1
10)7 197	2	1	215	135	1	1
10	08 213	2	1	216	500	5	3
				SUM:	252803	2123	1250

HS, numerosità (Init. abund.) e carrying capacity (K) nella frammentazione del 50% di habitat per il paesaggio di Viterbo

Patch	Total	К	Init.	Patch	Total	к	Init.
	HS		abund.		HS		abund.
1	138	1	1	70	325	3	2
2	174	1	1	71	1976	16	9
3	645	6	3	72	728	6	4
4	848	7	4	73	387	4	2
5	583	5	3	74	176	2	1
6	827	7	4	75	153	1	1
7	223	2	1	76	186	2	1
8	271	3	2	77	364	3	2
9	218	2	1	78	143	1	1
10	576	5	3	79	163	2	1

11	1476	12	7	80	169	2	1
12	328	3	2	81	3770	31	18
13	304	3	1	82	893	7	4
14	1153	10	6	83	910	8	5
15	188	2	1	84	201	2	1
16	140	1	1	85	295	2	1
17	162	1	1	86	541	5	3
18	620	5	3	87	277	2	1
19	5766	48	28	88	485	4	3
20	3648	30	18	89	975	8	5
21	228	2	1	90	173	2	1
22	274	3	2	91	967	8	5
23	941	8	5	92	360	3	2
24	197	2	1	93	1566	13	8
25	153	1	1	94	923	8	5
26	165	2	1	95	569	5	3
27	951	8	5	96	192	2	1
28	412	3	2	97	201	2	1
29	454	4	2	98	227	2	1
30	350	3	2	99	322	3	2
31	161	1	1	100	457	4	2
32	397	4	2	101	5066	42	24
33	237	2	1	102	168	2	1
34	256	2	2	103	407	4	2
35	1652	14	8	104	247	2	1
36	712	6	4	105	261	2	2
37	476	4	3	106	195	2	1
38	193	2	1	107	2956	24	14
39	466	4	2	108	309	3	2
40	1301	11	6	109	2218	18	11
41	1171	10	6	110	408	3	2
42	121	1	1	111	802	7	4
43	161	1	1	112	203	2	1
44	170	1	1	113	155	1	1
45	482	4	3	114	2284	19	11
46	182	2	1	115	3585	30	17
47	351	3	2	110	2028	22	13
48	193	2 10	I C	110	748	/	4 F
49 50	1241	10	6	110	207	9	5 2
50	702	10	0	119	210	4 2	2
51	1677	1/	4	120	210	2	1
52	230	14 Л	0 2	177	200 2007	5 10	∠ 11
55	162	+ 1	د 1	172	2083	17	10
54	70 <i>/</i>	- 6	т 4	123	2605	י_ ג	2
55	461	4	2	125	110	1	1
57	1911	16	- 10	126	493	4	2
57		10	10	120	155	-	-

58 265 2 2 127 377 3 2 59 338 3 2 128 196 2 1 60 592 5 3 129 301 3 2 61 2638 22 13 130 719 6 4 62 139 1 1 131 1075 9 6 63 484 4 3 132 504 4 3 64 280 2 1 133 1036 9 5 65 197 2 1 134 453 4 2 66 6802 56 33 135 202 2 1 67 172 2 1 136 202 2 1 68 185 2 1 137 500 5 3 69 691 6 3 SUM: 107034 907 541								
593383212819621605925312930132612638221313071964621391113110759663484431325044364280211331036956519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	58	265	2	2	127	377	3	2
605925312930132612638221313071964621391113110759663484431325044364280211331036956519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	59	338	3	2	128	196	2	1
612638221313071964621391113110759663484431325044364280211331036956519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	60	592	5	3	129	301	3	2
621391113110759663484431325044364280211331036956519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	61	2638	22	13	130	719	6	4
63484431325044364280211331036956519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	62	139	1	1	131	1075	9	6
64280211331036956519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	63	484	4	3	132	504	4	3
6519721134453426668025633135202216717221136202216818521137500536969163SUM:107034907541	64	280	2	1	133	1036	9	5
66 6802 56 33 135 202 2 1 67 172 2 1 136 202 2 1 68 185 2 1 137 500 5 3 69 691 6 3 SUM: 107034 907 541	65	197	2	1	134	453	4	2
67 172 2 1 136 202 2 1 68 185 2 1 137 500 5 3 69 691 6 3 SUM: 107034 907 541	66	6802	56	33	135	202	2	1
68 185 2 1 137 500 5 3 69 691 6 3 SUM: 107034 907 541	67	172	2	1	136	202	2	1
69 691 6 3 SUM: 107034 907 541	68	185	2	1	137	500	5	3
	69	691	6	3	SUM:	107034	907	541

APPENDICE P

Indici geometrici dei patch che compongono il paesaggio di Viterbo negli scenari di cambiamento dell'habitat: area dei patch (in km²), area dei patch espressa in percentuale rispetto l'estensione di tutti gli altri patch presenti nel paesaggio (Area as % of patches) e rispetto l'estensione totale del paesaggio (Area as % of landsc.), perimetro dei patch (in km; Edge) e rapporto tra il perimetro e l'area di ciascun patch (indice di forma dei patch; Edge:A). Alla fine delle tabelle sono riportati i valori medi delle aree, dei perimetri e dei rapporti tra i perimetri e le aree dei patch che compongono il paesaggio.

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,54	2,02%	0,21%	8,2	15,25	55	0,18	0,67%	0,07%	4,5	25,10
2	0,05	0,19%	0,02%	1,9	38,80	56	0,06	0,22%	0,02%	1,4	24,57
3	0,03	0,11%	0,01%	0,8	26,23	57	0,04	0,13%	0,01%	2,7	77,49
4	0,09	0,32%	0,03%	3,0	34,77	58	0,18	0,69%	0,07%	9,3	50,90
5	0,02	0,07%	0,01%	1,1	53,54	59	0,02	0,06%	0,01%	0,8	49,67
6	0,03	0,12%	0,01%	0,9	27,13	60	0,03	0,09%	0,01%	1,0	41,11
7	0,22	0,83%	0,09%	5,3	23,87	61	0,05	0,19%	0,02%	2,1	41,88
8	0,21	0,77%	0,08%	4,9	23,98	62	0,04	0,15%	0,02%	2,1	51,61
9	0,11	0,42%	0,04%	2,9	25,71	63	0,07	0,27%	0,03%	1,3	18,01
10	0,23	0,87%	0,09%	4,1	17,69	64	0,04	0,17%	0,02%	2,2	49,44
11	0,04	0,15%	0,02%	1,0	26,74	65	0,05	0,19%	0,02%	2,3	46,49
12	0,03	0,12%	0,01%	1,2	37,82	66	0,08	0,28%	0,03%	3,8	49,41
13	0,11	0,42%	0,04%	3,2	28,06	67	0,12	0,44%	0,05%	3,0	25,21
14	0,18	0,68%	0,07%	2,3	12,50	68	0,04	0,14%	0,02%	3,0	77,72
15	0,30	1,10%	0,12%	10,4	35,07	69	0,07	0,25%	0,03%	5,4	81,09
16	0,02	0,09%	0,01%	1,0	41,32	70	0,03	0,10%	0,01%	0,8	28,47
17	0,16	0,60%	0,06%	3,6	22,13	71	0,03	0,12%	0,01%	1,2	38,06
18	0,02	0,09%	0,01%	1,2	48,78	72	0,03	0,10%	0,01%	1,2	44,78
19	0,14	0,52%	0,05%	4,9	35,01	73	0,04	0,15%	0,02%	1,0	25,63
20	0,07	0,24%	0,03%	2,4	37,23	74	0,03	0,12%	0,01%	3,1	100,90
21	4,84	18,11%	1,91%	86,7	17,90	75	0,05	0,19%	0,02%	3,5	70,14
22	0,20	0,76%	0,08%	6,0	29,14	76	0,22	0,81%	0,08%	2,1	9,74
23	0,05	0,19%	0,02%	3,5	69,46	77	0,04	0,14%	0,01%	1,7	46,74
24	0,11	0,40%	0,04%	2,6	24,18	78	0,19	0,72%	0,08%	5,1	26,69
25	0,33	1,24%	0,13%	7,0	21,14	79	2,07	7,75%	0,82%	47,4	22,88
26	0,02	0,09%	0,01%	1,5	61,48	80	0,04	0,13%	0,01%	1,3	35,59
27	0,72	2,70%	0,28%	11,9	16,54	81	0,33	1,25%	0,13%	12,0	35,88
28	0,05	0,19%	0,02%	2,5	47,60	82	0,04	0,15%	0,02%	2,2	54,55
29	0,15	0,56%	0,06%	6,8	44,83	83	0,03	0,11%	0,01%	1,0	35,09
30	0,02	0,07%	0,01%	1,5	78,92	84	2,91	10,89%	1,15%	70,7	24,28
31	0,18	0,66%	0,07%	5,7	32,03	85	0,15	0,56%	0,06%	7,1	47,44

Indici geometrici dei patch nella perdita del 25% di habitat per il paesaggio di Viterbo

32	0,04	0,15%	0,02%	1,3	33,51	86	0,37	1,38%	0,14%	10,9	29,60
33	0,08	0,30%	0,03%	3,8	47,52	87	0,04	0,16%	0,02%	2,6	61,11
34	0,08	0,30%	0,03%	2,3	29,11	88	0,11	0,40%	0,04%	4,2	39,59
35	0,46	1,73%	0,18%	17,8	38,49	89	1,79	6,69%	0,70%	33,9	18,94
36	0,04	0,16%	0,02%	1,7	40,29	90	0,03	0,13%	0,01%	1,3	38,24
37	1,56	5,82%	0,61%	19,2	12,31	91	0,31	1,14%	0,12%	12,0	39,31
38	0,89	3,34%	0,35%	16,2	18,16	92	0,18	0,68%	0,07%	5,2	28,54
39	0,05	0,17%	0,02%	3,0	64,94	93	0,03	0,09%	0,01%	1,0	38,58
40	0,05	0,17%	0,02%	1,9	41,33	94	0,05	0,19%	0,02%	2,2	42,41
41	0,03	0,09%	0,01%	1,8	73,60	95	0,11	0,43%	0,05%	3,8	33,16
42	0,08	0,29%	0,03%	5,4	69,07	96	0,08	0,32%	0,03%	4,5	53,38
43	0,20	0,75%	0,08%	4,6	22,99	97	0,65	2,45%	0,26%	15,6	23,85
44	0,06	0,21%	0,02%	1,9	32,35	98	0,07	0,27%	0,03%	1,7	24,17
45	0,12	0,44%	0,05%	2,9	25,15	99	0,11	0,42%	0,04%	3,7	32,77
46	1,02	3,82%	0,40%	11,3	11,03	100	0,04	0,15%	0,02%	2,4	61,70
47	0,10	0,36%	0,04%	4,3	44,15	101	0,10	0,37%	0,04%	1,7	17,66
48	0,03	0,11%	0,01%	1,1	38,49	102	0,12	0,44%	0,05%	3,0	25,71
49	0,02	0,09%	0,01%	1,5	61,98	103	0,05	0,18%	0,02%	1,4	28,34
50	0,20	0,74%	0,08%	7,0	35,63	104	0,11	0,42%	0,04%	3,4	29,99
51	0,12	0,44%	0,05%	3,5	29,62	105	0,16	0,61%	0,06%	4,3	26,16
52	0,03	0,10%	0,01%	1,9	75,19	106	0,22	0,84%	0,09%	3,7	16,72
53	0,03	0,11%	0,01%	1,2	41,70	107	0,03	0,11%	0,01%	1,3	44,37
54	0,13	0,49%	0,05%	3,4	25,49	108	0,02	0,06%	0,01%	0,6	37,33
						Media:	0,25		10,43%	6,0	24,28
						-					

Indici geometrici dei patch nella perdita del 50% di habitat per il paesaggio di Viterbo

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,120	0,97%	0,05%	2,3	19,52	24	0,050	0,40%	0,02%	3,5	70,14
2	0,020	0,16%	0,01%	1,1	53,54	25	0,216	1,75%	0,08%	2,1	9,74
3	0,223	1,81%	0,09%	5,3	23,87	26	0,193	1,56%	0,08%	5,1	26,69
4	0,205	1,66%	0,08%	4,9	23,98	27	0,035	0,29%	0,01%	1,3	35,59
5	0,113	0,91%	0,04%	2,9	25,71	28	0,334	2,71%	0,13%	12,0	35,88
6	0,791	6,41%	0,31%	15,3	19,33	29	0,040	0,32%	0,02%	2,2	54,55
7	0,113	0,91%	0,04%	3,2	28,06	30	2,497	20,23%	0,98%	57,4	23,00
8	0,130	1,05%	0,05%	5,7	44,07	31	0,027	0,22%	0,01%	1,0	35,16
9	0,162	1,31%	0,06%	3,6	22,03	32	0,341	2,76%	0,13%	7,9	23,29
10	0,139	1,13%	0,05%	4,9	35,01	33	0,368	2,98%	0,14%	10,9	29,60
11	3,089	25,03%	1,22%	53,6	17,35	34	0,043	0,35%	0,02%	2,6	61,11
12	0,295	2,39%	0,12%	6,8	22,90	35	0,306	2,48%	0,12%	12,0	39,31
13	0,025	0,21%	0,01%	1,0	41,11	36	0,025	0,21%	0,01%	1,0	38,58
14	0,088	0,71%	0,03%	2,3	26,68	37	0,051	0,42%	0,02%	2,2	42,41
15	0,045	0,36%	0,02%	2,2	49,44	38	0,115	0,93%	0,05%	3,8	33,16
16	0,035	0,28%	0,01%	1,6	45,71	39	0,084	0,68%	0,03%	4,5	53,38

17	0,119	0,96%	0,05%	3,0	25,21	40	0,072	0,58%	0,03%	1,7	24,17
18	0,027	0,22%	0,01%	0,8	28,47	41	0,112	0,91%	0,04%	3,7	32,77
19	0,031	0,25%	0,01%	1,2	38,06	42	0,039	0,32%	0,02%	2,4	61,70
20	1,139	9,23%	0,45%	26,5	23,24	43	0,036	0,29%	0,01%	1,0	28,89
21	0,027	0,22%	0,01%	1,2	44,78	44	0,113	0,91%	0,04%	3,4	29,99
22	0,040	0,32%	0,02%	1,0	25,63	45	0,224	1,81%	0,09%	3,7	16,72
23	0,031	0,25%	0,01%	3,1	100,90	46	0,015	0,12%	0,01%	0,6	37,33
						Media:	0,268		4,67%	6,5	24,27

Indici geometrici dei patch nella frammentazione del 25% di habitat per il paesaggio di Viterbo

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,020	0,08%	0,01%	0,92	45,54	109	0,755	2,87%	0,30%	20,30	26,89
2	0,039	0,15%	0,02%	1,96	50,00	110	0,027	0,10%	0,01%	0,86	32,09
3	0,063	0,24%	0,02%	2,56	40,76	111	0,161	0,61%	0,06%	6,24	38,76
4	0,060	0,23%	0,02%	1,62	27,09	112	0,092	0,35%	0,04%	1,98	21,57
5	0,024	0,09%	0,01%	1,00	42,37	113	0,021	0,08%	0,01%	0,86	41,15
6	0,014	0,05%	0,01%	0,84	58,74	114	0,103	0,39%	0,04%	3,44	33,30
7	0,074	0,28%	0,03%	1,50	20,35	115	0,083	0,32%	0,03%	2,54	30,53
8	0,066	0,25%	0,03%	2,44	36,91	116	0,085	0,32%	0,03%	2,92	34,43
9	0,041	0,16%	0,02%	2,00	48,31	117	0,026	0,10%	0,01%	0,94	36,58
10	0,029	0,11%	0,01%	1,48	50,86	118	0,014	0,05%	0,01%	0,90	65,69
11	0,068	0,26%	0,03%	1,98	29,33	119	0,075	0,28%	0,03%	2,10	28,19
12	0,032	0,12%	0,01%	0,86	27,13	120	0,046	0,18%	0,02%	2,50	54,00
13	0,177	0,67%	0,07%	4,40	24,83	121	0,029	0,11%	0,01%	1,12	38,49
14	0,158	0,60%	0,06%	3,36	21,21	122	0,014	0,05%	0,01%	1,14	82,01
15	0,109	0,41%	0,04%	3,68	33,79	123	0,045	0,17%	0,02%	1,60	35,32
16	0,055	0,21%	0,02%	3,42	62,64	124	0,033	0,13%	0,01%	1,28	38,91
17	0,030	0,11%	0,01%	1,32	43,85	125	0,026	0,10%	0,01%	1,30	49,62
18	0,045	0,17%	0,02%	2,18	48,66	126	0,053	0,20%	0,02%	2,62	49,81
19	0,084	0,32%	0,03%	2,60	30,84	127	1,514	5,76%	0,60%	28,34	18,71
20	0,088	0,33%	0,03%	2,40	27,24	128	0,024	0,09%	0,01%	1,50	61,98
21	0,036	0,14%	0,01%	1,92	53,48	129	0,025	0,10%	0,01%	0,96	38,40
22	0,695	2,64%	0,27%	12,24	17,61	130	0,134	0,51%	0,05%	5,76	42,86
23	0,033	0,13%	0,01%	1,88	57,14	131	0,116	0,44%	0,05%	3,30	28,55
24	0,047	0,18%	0,02%	1,12	23,78	132	0,028	0,11%	0,01%	1,18	41,70
25	0,015	0,06%	0,01%	0,90	58,82	133	0,086	0,33%	0,03%	2,48	28,77
26	0,030	0,12%	0,01%	1,10	36,30	134	0,063	0,24%	0,02%	1,50	23,73
27	0,207	0,79%	0,08%	5,00	24,11	135	0,095	0,36%	0,04%	2,68	28,09
28	0,050	0,19%	0,02%	1,36	27,47	136	0,058	0,22%	0,02%	3,98	69,10
29	0,759	2,89%	0,30%	16,06	21,15	137	0,032	0,12%	0,01%	1,48	46,25
30	0,033	0,12%	0,01%	1,54	47,38	138	0,017	0,06%	0,01%	0,88	53,33
31	0,032	0,12%	0,01%	0,90	27,78	139	0,146	0,55%	0,06%	8,16	55,93
32	0,020	0,07%	0,01%	1,12	56,85	140	0,015	0,06%	0,01%	0,76	49,67

33	0,017	0,06%	0,01%	1,32	78,11	141	0,069	0,26%	0,03%	1,78	25,65
34	0,020	0,08%	0,01%	1,20	59,11	142	0,027	0,10%	0,01%	1,56	56,93
35	0,020	0,08%	0,01%	0,98	48,51	143	0,025	0,10%	0,01%	1,04	41,11
36	0,410	1,56%	0,16%	8,76	21,39	144	0,133	0,51%	0,05%	4,14	31,08
37	0,130	0,50%	0,05%	3,38	25,94	145	0,045	0,17%	0,02%	2,22	49,44
38	0,180	0,69%	0,07%	6,90	38,29	146	0,015	0,06%	0,01%	0,98	66,67
39	0,147	0,56%	0,06%	3,34	22,75	147	0,030	0,11%	0,01%	1,74	57,62
40	0.043	, 0.16%	0.02%	1.64	, 38.59	148	0.036	, 0.14%	, 0.01%	, 1.36	37.47
41	0.102	0.39%	0.04%	4.04	39.69	149	0.119	0.45%	0.05%	3.00	25.21
42	0.157	0.60%	0.06%	4.22	26.95	150	0.018	0.07%	0.01%	1.34	75.71
43	0.042	0.16%	0.02%	2 58	62 02	151	0.027	0.10%	0.01%	2 34	86.03
44	0.065	0.25%	0.03%	1 64	25.08	152	0.066	0.25%	0.03%	5 36	81 09
45	0 105	0,23%	0.04%	3 98	37 87	152	0.026	0.10%	0.01%	1 50	57.03
46	0,103	2 25%	0,04%	15 18	25.60	154	0.027	0.10%	0.01%	0.78	28.47
40	0,555	2,2370	0,23%	11 / 8	23,00	155	0.316	1 20%	0,017%	10.18	20,47
47	0,525	0 10%	0,21/0	2 / 9	60.16	155	0,010	0 1 2 %	0,12/0	1 1 2	38.06
40	0,030	0,19%	0,0270	3,40 1 72	55 12	150	0,031	0,12/0	0,01%	1,10 2,62	26.95
49 50	0,031	0,12%	0,01%	1,72	20.24	157	0,071	0,27%	0,03%	2,02	30,83 33.66
50	0,070	0,27%	0,03%	2,12	30,24	158	0,077	0,29%	0,03%	1,74	22,00
51	0,036	0,14%	0,01%	1,72	47,78	159	0,733	2,79%	0,29%	18,80	25,63
52	0,107	0,41%	0,04%	2,58	24,18	160	0,027	0,10%	0,01%	1,20	44,78
53	0,243	0,92%	0,10%	5,76	23,70	161	0,040	0,15%	0,02%	1,02	25,63
54	0,145	0,55%	0,06%	3,16	21,79	162	0,031	0,12%	0,01%	3,14	100,90
55	0,019	0,07%	0,01%	0,78	40,63	163	0,050	0,19%	0,02%	3,50	/0,14
56	0,024	0,09%	0,01%	1,50	61,48	164	0,037	0,14%	0,01%	1,72	46,74
57	0,052	0,20%	0,02%	2,48	47,60	165	0,111	0,42%	0,04%	1,82	16,34
58	0,249	0,94%	0,10%	4,28	17,22	166	0,095	0,36%	0,04%	3,22	34,07
59	0,036	0,14%	0,01%	0,98	26,92	167	0,192	0,73%	0,08%	7,34	38,17
60	0,044	0,17%	0,02%	1,84	41,91	168	0,180	0,68%	0,07%	5,56	30,89
61	0,070	0,26%	0,03%	3,14	45,11	169	0,157	0,60%	0,06%	3,92	24,90
62	0,019	0,07%	0,01%	1,46	78,92	170	0,021	0,08%	0,01%	1,38	65,71
63	0,085	0,32%	0,03%	3,30	38,82	171	0,021	0,08%	0,01%	1,28	61,84
64	0,034	0,13%	0,01%	1,64	47,95	172	0,040	0,15%	0,02%	2,16	54,55
65	0,018	0,07%	0,01%	1,34	75,71	173	0,315	1,20%	0,12%	8,62	27,39
66	0,035	0,13%	0,01%	1,16	33,33	174	0,443	1,68%	0,17%	10,88	24,55
67	0,081	0,31%	0,03%	3,84	47,52	175	0,131	0,50%	0,05%	4,70	35,91
68	0,080	0,30%	0,03%	2,32	29,11	176	0,058	0,22%	0,02%	1,76	30,50
69	0,047	0,18%	0,02%	2,26	48,39	177	0,306	1,16%	0,12%	6,46	21,14
70	0,182	0,69%	0,07%	5,50	30,25	178	0,112	0,43%	0,04%	3,66	32,65
71	0,028	0,10%	0,01%	1,20	43,64	179	0,029	0,11%	0,01%	1,00	35,09
72	0,875	3,33%	0,34%	11,10	12,68	180	0,835	3,18%	0,33%	19,44	23,28
73	0,033	0,13%	0,01%	1,82	54,82	181	0,062	0,24%	0,02%	1,86	30,05
74	0,063	0,24%	0,02%	2,70	42,86	182	0,024	0,09%	0,01%	1,00	41,67
75	0,030	0,11%	0,01%	0,96	31,79	183	0,108	0,41%	0,04%	4,56	42,42
76	0,035	0,13%	0,01%	2,02	57,39	184	0,043	0,16%	0,02%	2,64	61,11
77	0,064	0,24%	0,03%	3,32	52,20	185	0,071	0,27%	0,03%	3,10	43,60
78	0,046	0,17%	0,02%	2,38	52,08	186	0,338	1,28%	0,13%	7,26	21,51
79	0,499	1,90%	0,20%	8,68	17,41	187	0,035	0,13%	0,01%	1,44	40,91

80	0,057	0,22%	0,02%	1,40	24,43	188	0,019	0,07%	0,01%	0,80	42,33
81	0,247	0,94%	0,10%	7,56	30,57	189	0,036	0,14%	0,01%	1,32	36,26
82	0,046	0,18%	0,02%	3,02	65,51	190	0,260	0,99%	0,10%	9,72	37,46
83	0,040	0,15%	0,02%	1,96	49,49	191	0,081	0,31%	0,03%	2,86	35,18
84	0,017	0,06%	0,01%	0,86	52,12	192	0,025	0,10%	0,01%	0,98	38,58
85	0,307	1,17%	0,12%	4,88	15,88	193	0,035	0,13%	0,01%	1,20	34,68
86	0,013	0,05%	0,01%	0,62	46,62	194	0,312	1,18%	0,12%	6,24	20,03
87	0,238	0,90%	0,09%	9,60	40,34	195	0,051	0,20%	0,02%	2,18	42,41
88	0,096	0,37%	0,04%	5,06	52,49	196	0,774	2,94%	0,30%	14,12	18,25
89	0,018	0,07%	0,01%	1,26	70,00	197	0,035	0,13%	0,01%	1,30	36,93
90	0,351	1,34%	0,14%	7,52	21,41	198	0,342	1,30%	0,13%	7,08	20,71
91	0,044	0,17%	0,02%	2,38	54,71	199	0,038	0,15%	0,02%	2,12	55,21
92	0,049	0,19%	0,02%	2,04	41,55	200	0,102	0,39%	0,04%	3,98	38,87
93	0,023	0,09%	0,01%	1,10	48,03	201	0,028	0,11%	0,01%	1,04	36,75
94	0,025	0,10%	0,01%	1,84	73,60	202	0,020	0,08%	0,01%	0,90	45,45
95	0,264	1,00%	0,10%	4,60	17,42	203	0,106	0,40%	0,04%	3,46	32,80
96	0,036	0,13%	0,01%	1,26	35,49	204	0,113	0,43%	0,04%	2,44	21,63
97	0,316	1,20%	0,12%	3,82	12,09	205	0,039	0,15%	0,02%	2,40	61,70
98	0,085	0,32%	0,03%	1,78	21,04	206	0,099	0,37%	0,04%	1,74	17,66
99	0,080	0,30%	0,03%	5,54	69,60	207	0,117	0,44%	0,05%	3,00	25,71
100	0,200	0,76%	0,08%	4,60	22,99	208	0,067	0,25%	0,03%	2,56	38,32
101	0,080	0,30%	0,03%	4,80	60,00	209	0,113	0,43%	0,04%	3,38	29,99
102	0,057	0,22%	0,02%	2,20	38,60	210	0,157	0,60%	0,06%	4,10	26,11
103	1,134	4,31%	0,45%	15,70	13,84	211	0,078	0,30%	0,03%	2,42	30,95
104	0,027	0,10%	0,01%	1,74	64,93	212	0,055	0,21%	0,02%	2,04	37,16
105	0,058	0,22%	0,02%	1,86	32,35	213	0,028	0,11%	0,01%	1,26	44,37
106	0,049	0,19%	0,02%	2,66	53,85	214	0,019	0,07%	0,01%	1,14	59 <i>,</i> 38
107	0,028	0,11%	0,01%	0,88	31,43	215	0,015	0,06%	0,01%	0,56	37,33
108	0,030	0,11%	0,01%	1,00	33,67	216	0,059	0,22%	0,02%	1,98	33,50
						Media:	0,122		10,43%	3,42	28,12

Indici geometrici dei patch nella frammentazione del 50% di habitat per il paesaggio di Viterbo

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,014	0,12%	0,01%	0,94	66,7	70	0,033	0,29%	0,01%	1,06	32,5
2	0,018	0,16%	0,01%	0,94	53,1	71	0,198	1,74%	0,08%	2,98	15,0
3	0,074	0,65%	0,03%	1,50	20,4	72	0,082	0,72%	0,03%	2,54	30,9
4	0,086	0,76%	0,03%	2,00	23,1	73	0,048	0,42%	0,02%	2,34	49,0
5	0,068	0,59%	0,03%	1,98	29,3	74	0,026	0,23%	0,01%	0,94	36,6
6	0,092	0,81%	0,04%	2,36	25,7	75	0,015	0,14%	0,01%	0,62	40,3
7	0,031	0,27%	0,01%	1,66	54,1	76	0,019	0,16%	0,01%	1,02	54,5
8	0,036	0,31%	0,01%	1,58	44,1	77	0,045	0,40%	0,02%	1,60	35,3
9	0,030	0,26%	0,01%	1,28	43,2	78	0,014	0,13%	0,01%	0,64	44,8
10	0,059	0,52%	0,02%	1,60	27,3	79	0,024	0,21%	0,01%	1,50	62,0

11	0,151	1,32%	0,06%	3,06	20,3	80	0,025	0,22%	0,01%	0,96	38,4
12	0,042	0,37%	0,02%	0,96	23,1	81	0,378	3,33%	0,15%	13,40	35,4
13	0,031	0,27%	0,01%	1,44	46,5	82	0,090	0,79%	0,04%	3,96	44,2
14	0,124	1,09%	0,05%	4,78	38,7	83	0,100	0,88%	0,04%	2,64	26,3
15	0,019	0,17%	0,01%	1,04	55,0	84	0,028	0,25%	0,01%	1,18	41,7
16	0,014	0,12%	0,01%	0,78	55,7	85	0,030	0,26%	0,01%	1,16	38,9
17	0,016	0,14%	0,01%	0,74	45,4	86	0,063	0,56%	0,02%	1,50	23,7
18	0,063	0,56%	0,02%	3,18	50,3	87	0,028	0,25%	0,01%	1,20	42,9
19	0,585	5,14%	0,23%	15,04	25,7	88	0,058	0,51%	0,02%	3,98	69,1
20	0,373	3,28%	0,15%	8,64	23,2	89	0,107	0,94%	0,04%	6,66	62,5
21	0,031	0,27%	0,01%	1,72	55,1	90	0,025	0,22%	0,01%	1,04	41,1
22	0,036	0,32%	0,01%	1,72	47,8	91	0,098	0,86%	0,04%	2,44	25,0
23	0,103	0,91%	0,04%	2,48	24,0	92	0,045	0,39%	0,02%	2,22	49,4
24	0,026	0,23%	0,01%	1,18	45,0	93	0,158	1,39%	0,06%	5,10	32,3
25	0,015	0,14%	0,01%	0,82	53,3	94	0,102	0,89%	0,04%	2,76	27,2
26	0,024	0,21%	0,01%	1,50	61,5	95	0,066	0,58%	0,03%	5,36	81,1
27	0,096	0,84%	0,04%	4,26	44,5	96	0,027	0,24%	0,01%	0,78	28,5
28	0,041	0,36%	0,02%	1,82	44,1	97	0,020	0,18%	0,01%	1,24	61,4
29	0,052	0,46%	0,02%	2,48	47,6	98	0,031	0,27%	0,01%	1,18	38,1
30	0,044	0,39%	0,02%	1,84	41,9	99	0,033	0,29%	0,01%	1,08	33,1
31	0,019	0,16%	0,01%	1,46	78,9	100	0,046	0,40%	0,02%	1,66	36,1
32	0,048	0,42%	0,02%	2,20	45,6	101	0,512	4,51%	0,20%	14,02	27,4
33	0,024	0,21%	0,01%	0,96	40,3	102	0,025	0,22%	0,01%	2,50	101,2
34	0,034	0,30%	0,01%	1,64	48,0	103	0,050	0,44%	0,02%	3,50	70,1
35	0,166	1,46%	0,07%	2,76	16,6	104	0,025	0,22%	0,01%	1,48	59,4
36	0,081	0,71%	0,03%	3,80	47,2	105	0,035	0,31%	0,01%	1,72	49,6
37	0,057	0,50%	0,02%	2,10	37,0	106	0,025	0,22%	0,01%	1,14	46,0
38	0,028	0,24%	0,01%	1,20	43,6	107	0,298	2,62%	0,12%	8,34	28,0
39	0,047	0,41%	0,02%	1,44	30,8	108	0,040	0,35%	0,02%	2,16	54,5
40	0,131	1,15%	0,05%	3,80	29,1	109	0,223	1,96%	0,09%	6,78	30,4
41	0,118	1,03%	0,05%	2,82	24,0	110	0,041	0,36%	0,02%	1,90	46,1
42	0,012	0,11%	0,00%	0,70	57,4	111	0,089	0,78%	0,04%	3,24	36,4
43	0,016	0,14%	0,01%	0,70	43,2	112	0,029	0,25%	0,01%	1,00	35,1
44	0,017	0,15%	0,01%	0,82	48,0	113	0,016	0,14%	0,01%	0,86	55,1
45	0,057	0,50%	0,02%	1,40	24,4	114	0,237	2,09%	0,09%	8,34	35,2
46	0,018	0,16%	0,01%	0,96	52,5	115	0,361	3,18%	0,14%	8,08	22,4
47	0,035	0,31%	0,01%	2,30	65,3	116	0,265	2,33%	0,10%	4,92	18,5
48	0,019	0,17%	0,01%	1,26	64,9 22 F	117	0,084	0,74%	0,03%	3,48	41,4
49	0,125	1,10%	0,05%	2,80	22,5	118	0,111	0,98%	0,04%	3,10	28,4
50	0,122	1,07%	0,05%	5,52	45,3	119	0,049	0,43%	0,02%	1,32	27,1
51	0,088	U,//%	0,03%	4,06	40,3 22 4	120	0,029	0,20%	0,01%	1,0U	54,0 40.0
52	0,108	1,48% 0 /00/	0,07%	5,02 1 /10	33,4 27 2	121	0,035	0,31%	0,01%	1,44 4 6 2	40,9 20.0
55 E1	0,034	0,40%	0,02%	1,40 1 00	21,3 65 0	122	0,232	2,04% 1 9E%	0,09%	4,02 5 02	20,0 22 0
54	0,010	0,14%	0,01%	1,Uð 5 54	05,8 60.6	123	0.045	1,00%	0,00%	3,0Z	20,9 20 0
55	0,080	0,70%	0,03%	5,54 1 44	09,0 21 1	124	0,045	0,40%	0,02%	1,52	55,8 517
50	0,040	0,41% 1 76%	0,02%	1,44 4 60	31,1 32 0	125	0,014	0,12%	0,01%	1.00	54,1 20 7
57	0,200	1,70%	0,00%	4,00	∠3,0	120	0,030	0,44%	0,02%	1,90	30,Z

58	0,034	0,30%	0,01%	1,96	57,7	127	0,047	0,41%	0,02%	1,12	24,0
59	0,034	0,30%	0,01%	1,38	40,7	128	0,025	0,22%	0,01%	1,24	49,8
60	0,059	0,52%	0,02%	2,18	36,7	129	0,039	0,34%	0,02%	2,40	61,7
61	0,265	2,33%	0,10%	8,62	32,6	130	0,081	0,71%	0,03%	1,62	20,0
62	0,014	0,12%	0,01%	0,76	54,7	131	0,117	1,03%	0,05%	3,00	25,7
63	0,058	0,51%	0,02%	1,86	32,3	132	0,057	0,50%	0,02%	2,20	38,6
64	0,028	0,25%	0,01%	1,56	55,5	133	0,113	0,99%	0,04%	3,38	30,0
65	0,028	0,25%	0,01%	0,88	31,4	134	0,046	0,40%	0,02%	1,76	38,5
66	0,685	6,03%	0,27%	8,28	12,1	135	0,028	0,25%	0,01%	1,26	44,4
67	0,025	0,22%	0,01%	0,94	37,3	136	0,023	0,20%	0,01%	1,00	43,9
68	0,027	0,24%	0,01%	0,86	32,1	137	0,059	0,52%	0,02%	1,98	33,5
69	0,069	0,61%	0,03%	2,64	38,1	Media:	0,083		4,67%	2,66	32,0

APPENDICE Q

Abbondanze della metapopolazione (N) attraverso il tempo (espresso in anni) per il paesaggio di Viterbo negli scenari di cambiamento dell'habitat. Le curve indicano le abbondanze medie, gli intervalli mostrano le abbondanze corrispondenti a \pm 1 di deviazione standard e i pallini rossi le abbondanze minime e massime di tutte le repliche. Tutti i valori per ogni intervallo temporale sono elencati sotto i grafici.

Abbondanze della metapopolazione nella perdita del 25% di habitat per il paesaggio di Viterbo

Tempo	Abbondanza Min. -1 S.D. Media +1 S.D. 1275 1275 1275 1275 1043 1165,4 1317 1468,6 1030 1180,8 1359 1537,2 881 1168 1380 1592					Tempo	Abbondanza				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	1275	1275	1275	1275	1275	27	490	689,8	966,5	1243,2	1914
1	1043	1165,4	1317	1468,6	1978	28	503	670,7	956,6	1242,5	1999
2	1030	1180,8	1359	1537,2	1958	29	440	646,7	945,1	1243,5	1911
3	881	1168	1380	1592	2126	30	416	633,8	917,1	1200,4	1712
4	935	1156,6	1384	1611,4	2042	31	387	606,1	893,7	1181,3	1941
5	935	1103	1372	1641	2276	32	344	595,3	896,5	1197,7	2275
6	877	1083,7	1359	1634,3	2202	33	371	602,2	873,3	1144,4	1885
7	805	1034	1324	1614	2427	34	367	617	878	1139	1651
8	805	990,7	1298	1605,3	2652	35	429	621,5	885,2	1148,9	1744
9	826	952	1271	1590	2689	36	420	588,8	866,1	1143,4	1842
10	757	890,7	1239	1587,3	3339	37	433	569,4	865,6	1161,8	2211
11	698	929,8	1239	1548,2	2613	38	435	538,1	875,7	1213,3	2598
12	659	869,7	1246	1622,3	2894	39	387	557	864	1171	1996
13	680	860	1206	1552	2502	40	360	531	831,2	1131,4	1912
14	706	828,3	1162	1495,7	2663	41	360	536,8	805,3	1073,8	1671
15	633	837,1	1171	1504,9	2314	42	340	507,4	803,3	1099,2	1878
16	626	798	1140	1482	2423	43	323	517,6	802,9	1088,2	1794

17	547	773,1	1104	1434,9	2332	44	302	507,8	800,8	1093,8	1663
18	530	766,1	1073	1379,9	2324	45	291	488,4	790,7	1093	1729
19	530	736,7	1044	1351,3	2442	46	285	467,5	775,9	1084,3	2068
20	461	750,1	1045	1339,9	1855	47	292	465,6	782,5	1099,4	2062
21	455	723,7	1048	1372,3	2760	48	270	482,4	774,5	1066,6	1654
22	497	720,5	1033	1345,5	2456	49	287	490	773,6	1057,2	1554
23	529	688,3	1017	1345,7	2469	50	271	492,6	757,6	1022,6	1674
24	519	716,3	989,3	1262,3	2119						
25	446	703,8	969,2	1234,6	1977	Percentili dell'abbondanza media totale fina					finale
26	470	715,7	972,3	1228,9	1765		5th	25th	50th	75th	95th
						50	375,85	588,5	733,5	891	1193,5

Abbondanze della metapopolazione nella perdita del 50% di habitat per il paesaggio di Viterbo

Tempo	Abbondanza Min. -1 S.D. Media +1 S.D. I 587 587 587 587					Tempo	Abbondanza				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	587	587	587	587	587	27	125	175,7	464,8	753,9	2388
1	406	528,43	619,3	710,17	854	28	120	207	469,3	731,6	1833
2	411	486,5	631,7	776,9	1262	29	99	201,8	455,8	709,8	1860
3	390	456,2	635,6	815	1304	30	104	203,5	441,2	678,9	1422
4	321	412,5	663,3	914,1	2164	31	102	190,4	436,1	681,8	1393
5	348	404,9	651,8	898,7	1595	32	96	181,8	437,2	692,6	1446
6	318	429,2	638,7	848,2	1319	33	122	204,8	409,4	614	1155
7	302	402	624,2	846,4	1360	34	107	194,9	403,6	612,3	1257
8	313	376,3	624,6	872,9	1998	35	96	191,2	413,6	636	1335
9	278	361,9	603,8	845,7	1845	36	94	205,4	402,3	599,2	1108
10	257	364,2	593,4	822,6	1701	37	120	167,8	401,9	636	1519
11	239	347	569,8	792,6	1261	38	118	85,3	394,9	704,5	2879
12	247	335,7	552,4	769,1	1578	39	104	126,8	383,1	639,4	2116

13	269	335,5	536,2	736,9	1395	40	107	143	361,8	580,6	1898
14	235	305,1	523,3	741,5	1444	41	93	186,3	348,7	511,1	947
15	201	307,9	496,6	685,3	1121	42	93	179,7	353,2	526,7	1265
16	220	310,6	493,1	675,6	1069	43	92	168,7	346,9	525,1	1197
17	200	314,9	479,2	643,5	994	44	94	167,8	339,3	510,8	1005
18	173	228,7	492,3	755,9	2327	45	78	169	335,1	501,2	932
19	162	244,7	486,4	728,1	1946	46	55	175,2	334,4	493,6	893
20	150	258,3	507	755,7	1485	47	40	168,5	325,5	482,5	839
21	138	169,2	513,9	858,6	2446	48	40	152,7	335,9	519,1	948
22	119	235,3	489,9	744,5	1561	49	46	163,9	335,7	507,5	1012
23	124	236,2	484	731,8	1622	50	53	153,9	323	492,1	851
24	129	234,1	475,9	717,7	1226						
25	126	214,8	480,2	745,6	1353	Pei	rcentili de	ll'abbonda	anza meo	lia totale f	inale
26	125	198,1	466,3	734,5	1491		5th	25th	50th	75th	95th
						50	102,4	214,25	295,5	398,75	661

Abbondanze della metapopolazione nella frammentazione del 25% di habitat per il paesaggio di Viterbo

Tempo			Abbond	anza		Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	1250	1250	1250	1250	1250	27	405	610,7	813,5	1016,3	1395
1	1128	1237,5	1296	1354,5	1422	28	423	591,5	801,6	1011,7	1536
2	1101	1222,5	1319	1415,5	1619	29	444	597,8	798,5	999,2	1401
3	1043	1201,7	1335	1468,3	1676	30	394	572,3	776,5	980,7	1398
4	1007	1174,1	1315	1455,9	1660	31	397	576,3	765,7	955,1	1325
5	958	1140,2	1283	1425,8	1701	32	372	553,5	746	938,5	1371
6	895	1109,4	1256	1402,6	1555	33	349	531,3	728,8	926,3	1435
7	805	1069,1	1217	1364,9	1543	34	350	522,1	713	903,9	1307

8	788	1028,6	1205	1381,4	1748	35	367	523,6	714,3	905	1299
9	718	1010,3	1173	1335,7	1515	36	345	504,4	697,5	890,6	1259
10	703	975	1136	1297	1551	37	344	503,7	687,6	871,5	1199
11	718	958	1122	1286	1549	38	314	495,8	683,1	870,4	1193
12	694	933,6	1096	1258,4	1445	39	284	499,6	684,8	870	1154
13	738	909,9	1084	1258,1	1444	40	240	485,3	674,7	864,1	1168
14	701	883,3	1065	1246,7	1513	41	240	466,3	662,2	858,1	1233
15	638	854,1	1036	1217,9	1598	42	295	465,3	650,3	835,3	1104
16	633	840,4	1011	1181,6	1448	43	299	456,8	632	807,2	1036
17	639	808,1	989,9	1171,7	1573	44	260	449,3	631,9	814,5	1160
18	590	781	972,8	1164,6	1513	45	261	444,5	619,7	794,9	1051
19	526	763,5	942,5	1121,5	1327	46	282	440,1	626,4	812,7	1043
20	473	733,8	923,4	1113	1507	47	246	429,1	610,2	791,3	1122
21	493	723,7	908,8	1093,9	1481	48	254	418,7	600,7	782,7	1125
22	517	709,9	902,3	1094,7	1437	49	244	413,2	599,8	786,4	1138
23	486	681,3	868,2	1055,1	1492	50	245	404,8	586,4	768	1047
24	513	668,4	875	1081,6	1557						
25	452	647,2	865,7	1084,2	1674	Pe	rcentili del	l'abbond	anza meo	dia totale f	inale
26	394	618,2	841,7	1065,2	1705		5th	25th	50th	75th	95th
						50	341,05	447,5	573,5	693,25	936,6

Abbondanze della metapopolazione nella frammentazione del 50% di habitat per il paesaggio di Viterbo

Tempo			Abbond	anza		Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	541	541	541	541	541	27	82	153,35	244,2	335,05	501
1	468	528,79	562,6	596,41	631	28	70	143,64	242,2	340,76	564
2	440	517,52	574,9	632,28	712	29	73	139,27	234,2	329,13	624
3	427	501,84	569,7	637,56	748	30	85	134,47	223,9	313,33	611
4	401	485,02	556	626,98	769	31	73	126,34	217,1	307,86	642
5	383	463,53	542,8	622,07	729	32	66	124,28	213,6	302,92	518
6	372	441,9	518,5	595,1	772	33	54	118,22	201,1	283,98	448
7	344	420,21	506,6	592,99	744	34	52	108,14	192,9	277,66	441
8	333	394,02	482,2	570,38	710	35	42	99,15	184,4	269,65	453
9	307	366,48	454,6	542,72	761	36	42	99,37	177,7	256,03	403
10	286	349,59	436,7	523,81	716	37	45	100,78	174,2	247,62	404
11	234	335,98	427,5	519,02	724	38	50	96,12	171,2	246,28	402
12	215	299,9	405	510,1	1063	39	40	86,18	164,7	243,22	499
13	211	299,87	384,4	468,93	766	40	29	86,94	162,8	238,66	441
14	210	291,32	371,2	451,08	642	41	24	85,85	158,8	231,75	372
15	213	276,39	350,8	425,21	545	42	15	76,92	155,1	233,28	373
16	200	260,82	337,8	414,78	558	43	18	70,44	153	235,56	382
17	185	251,37	330,9	410,43	666	44	8	69,45	148,2	226,95	370
18	179	239,27	319,8	400,33	687	45	9	66,27	141,7	217,13	392
19	154	233,25	307	380,75	614	46	1	62,73	139,9	217,07	359
20	144	220,78	299,7	378,62	519	47	1	57,15	139,3	221,45	397
21	155	212,27	286,5	360,73	506	48	0	57,03	133,1	209,17	312
22	122	201,54	281,8	362,06	474	49	0	54,03	128,8	203,57	349
23	126	186,5	273,2	359,9	586	50	0	53,01	123,8	194,59	324
24	130	177,64	266	354,36	621						
25	94	175,24	262,8	350,36	531	Perc	entili de	ll'abbonda	anza med	ia totale fi	nale
26	101	169,57	251,1	332,63	483		5th	5th 25th 50th 75th 95			
						50	17,9	71,75	119,5	163,5	262,4

APPENDICE R

Numero delle popolazioni presenti attraverso il tempo (espresso in anni) per il paesaggio di Viterbo negli scenari di cambiamento dell'habitat. Le curve indicano il numero medio delle popolazioni presenti, gli intervalli mostrano il numero delle popolazioni corrispondenti a \pm 1 di deviazione standard e i pallini rossi il numero delle popolazioni minimo e massimo di tutte le repliche. Tutti i valori per ogni intervallo temporale sono elencati sotto i grafici.

Occupancy della metapopolazione nella perdita del 25% di habitat per il paesaggio di Viterbo

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	108	108	108	108	108	26	43	53	60,1	67,1	77
1	90	95,3	98	100,7	105	27	42	52,3	59 <i>,</i> 3	66,4	75
2	85	89,7	93,1	96,5	102	28	39	51,6	58,9	66,2	75
3	80	85,8	89,3	92,9	99	29	38	50,7	58,2	65,7	76
4	76	82,7	86,4	90,1	96	30	37	49,5	57,2	64,9	73
5	74	79 <i>,</i> 8	84	88,2	94	31	37	48,7	56,5	64,4	72
6	72	77,8	82,4	87	95	32	34	48,3	55,8	63,2	70
7	67	75	80,3	85,5	92	33	32	47,6	55,4	63,1	71
8	64	74,1	79	84	89	34	33	46,5	54,6	62,6	70
9	66	72,5	77,6	82,6	89	35	35	46,1	54	61,9	69
10	63	70,3	75,8	81,4	93	36	33	45,1	53,3	61,6	74
11	63	69,3	74,9	80,5	91	37	35	44,7	52,9	61,2	73
12	61	67,5	73,4	79,4	88	38	32	44,6	52,7	60,7	72
13	56	66,5	72,6	78,6	85	39	33	43,8	52,1	60,5	73
14	54	64,8	71,2	77,6	85	40	33	43,5	51,7	59,9	70
15	54	63,7	70,2	76,7	89	41	32	42,7	51,3	59,8	71
16	52	63	69,3	75,5	85	42	30	41,7	50,5	59,2	72

17	49	61,6	68,1	74,6	85	43	29	41,6	50,2	58,7	69
18	48	60,2	66,9	73,6	83	44	30	41,5	49,8	58,2	68
19	46	58,8	65,7	72,6	83	45	28	40,3	48,6	56,9	69
20	46	58,2	65,2	72,3	83	46	28	41	49	57	67
21	44	57,1	64,4	71,7	87	47	27	40,3	48,5	56,6	67
22	44	56,1	63,1	70,1	83	48	29	40,4	48,6	56,9	66
23	43	55,4	62,6	69,7	85	49	28	39,8	48,5	57,1	69
24	43	54,5	61,9	69,4	84	50	24	39,4	47,9	56,3	68
25	42	53,5	60,8	68	78						

Occupancy della metapopolazione nella perdita del 50% di habitat per il paesaggio di Viterbo

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Medio	+1 S.D.	Max.		Min.	-1 S.D.	Medio	+1 S.D.	Max.
0	46	46	46	46	46	26	10	16,5	21,4	26,3	36
1	37	39,5	41,3	43,1	45	27	10	16,3	21,2	26,2	36
2	31	36,6	38,8	41	45	28	10	16,2	21	25,9	33
3	29	34,5	37	39,4	43	29	11	15,9	20,8	25,6	31
4	25	32,7	35,9	39	42	30	10	15,5	20,2	24,9	31
5	25	31,5	34,5	37,6	40	31	9	15,3	20,2	25	32
6	24	30,2	33,4	36,6	40	32	10	15,1	20	24,8	31
7	24	29,3	32,5	35,8	39	33	9	15	19,8	24,7	31
8	25	28	31,3	34,7	40	34	8	14,4	19,3	24,3	32
9	22	26,8	30,3	33,8	39	35	8	14,2	19,3	24,4	34
10	23	26,1	29,6	33,1	38	36	8	14	19	23,9	33
11	23	25,4	29	32,6	37	37	6	13,7	18,7	23,8	32
12	21	24,5	28,3	32,2	39	38	6	13,5	18,5	23,4	33
13	20	23,9	27,9	31,8	38	39	6	13,3	18,2	23,2	31
14	19	23,2	27,2	31,2	39	40	6	13,3	18,1	22,8	30

15	20	23	26,6	30,2	38	41	6	12,8	17,7	22,6	31
16	20	22,6	26	29,5	36	42	6	12,5	17,4	22,3	32
17	18	21,7	25,3	28,9	38	43	6	12,4	17,3	22,3	30
18	16	20,7	24,8	28,9	36	44	7	12,2	17,1	22,1	30
19	15	19,9	24,1	28,3	34	45	7	12,2	16,8	21,4	29
20	11	19,2	23,6	28	34	46	6	12,3	17	21,7	29
21	10	18,5	23,1	27,6	36	47	6	11,9	16,5	21,2	29
22	12	18,2	22,9	27,5	37	48	6	11,8	16,3	20,9	28
23	12	17,9	22,4	26,9	37	49	6	11,6	16,1	20,7	27
24	11	17,1	22,1	27,1	39	50	6	11,3	15,9	20,4	29
25	11	16,9	21,7	26,5	35						

Occupancy della metapopolazione nella frammentazione del 25% di habitat per il paesaggio di Viterbo

Tempo	Tempo Popolazioni occupate Min. -1 S.D. Media +1 S.D. M					Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	216	216	216	216	216	26	69	84,1	96,3	108,6	126
1	171	179,7	184,9	190,1	198	27	59	81,3	93,9	106,6	127
2	156	163,6	169,3	175	185	28	60	79,7	92,7	105,7	124
3	149	153,6	160	166,4	174	29	60	78,6	91,1	103,6	122
4	140	146,9	154	161,1	173	30	59	76,8	89,5	102,2	121
5	133	139,9	147,7	155,5	169	31	61	76,1	88,6	101,1	122
6	126	135	143,1	151,2	164	32	59	73,7	87,3	100,9	122
7	114	131,6	139	146,4	162	33	54	71,1	85,4	99,6	124
8	108	126,6	135,1	143,6	159	34	56	70,2	84,1	98	121
9	104	123,1	132,2	141,3	154	35	55	69,9	83,5	97,1	121
10	101	119,5	129	138,5	148	36	51	69	83	97	123
11	101	117	126,3	135,6	148	37	50	66,9	81,3	95,7	119

12	102	114,2	123,8	133,4	147	38	43	65,5	80,5	95,6	115
13	98	111,6	121,3	131	144	39	47	65,4	79,9	94,4	123
14	98	109,8	119,3	128,8	144	40	40	63,1	78,7	94,3	122
15	92	105,9	116,1	126,3	140	41	40	62,6	78	93,4	115
16	91	104,3	113,8	123,3	144	42	37	61,3	76,8	92,3	115
17	91	100,9	111,2	121,5	146	43	38	60,1	75,5	91	112
18	85	98,9	108,9	118,9	146	44	37	58,9	74,6	90,2	113
19	83	96,7	107,2	117,6	144	45	38	58	73,7	89,4	112
20	82	94,5	105,2	116	143	46	34	57,5	73,2	88,9	114
21	71	93,2	104,4	115,6	135	47	33	56,6	72,3	88,1	114
22	70	91,4	102,4	113,4	128	48	32	55,9	71,7	87,5	118
23	68	89	101	113,1	130	49	33	54,9	70,8	86,7	111
24	68	87,7	99,3	111	125	50	35	54,1	69,8	85,6	110
25	71	85,7	98	110,3	128						

Occupancy della metapopolazione nella frammentazione del 50% di habitat per il paesaggio di Viterbo

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	137	137	137	137	137	26	16	24,7	31,7	38,7	58
1	103	109,2	113,1	117	122	27	14	24	31,1	38,1	57
2	87	95,2	99,5	103,8	108	28	14	23,1	30,1	37	53
3	80	85,5	90,5	95,6	104	29	14	22	29,2	36,4	53
4	70	78,2	83,6	89	95	30	12	21,3	28,3	35,3	50
5	64	72,5	78,4	84,2	91	31	12	20,6	27,5	34,5	49
6	61	68,3	74	79,7	88	32	11	19,8	26,6	33,4	46
7	54	63,8	69,9	76,1	83	33	10	18,8	25,8	32,8	46
8	54	60,6	67,1	73,5	83	34	10	17,4	24,6	31,9	46

9	49	57	63,8	70,6	83	35	10	16,6	24	31,3	44
10	46	53,4	60,3	67,2	80	36	9	15,9	23,4	31	45
11	42	50,7	57,9	65	76	37	9	15,3	22,7	30	45
12	39	47,9	54,5	61,2	71	38	8	14,7	22	29,2	41
13	38	46	52,6	59,2	69	39	7	13,8	21	28,3	41
14	35	43,5	50,5	57,5	68	40	7	13,4	20,7	28	45
15	30	40,8	48	55,1	64	41	3	13,1	20,2	27,4	39
16	29	38,9	46,1	53,3	64	42	4	12,8	19,9	27	40
17	29	37,2	44,5	51,8	63	43	4	11,8	19,5	27,2	41
18	28	35,9	43,1	50,4	63	44	2	10,8	18,8	26,8	45
19	26	34,3	41,5	48,6	61	45	1	10,6	18,6	26,6	42
20	24	32,8	39,9	47	61	46	1	10,1	18,4	26,6	39
21	23	31,5	38,4	45,4	55	47	1	9,8	17,5	25,3	35
22	19	29,9	36,8	43,8	53	48	0	9,5	17,4	25,2	35
23	19	28,8	35,8	42,8	52	49	0	9,1	16,8	24,6	34
24	16	27,4	34,2	41	54	50	0	8,5	16,3	24	33
25	15	26,2	33,2	40,1	53						

APPENDICE S

Mappa delle metapopolazioni di inizio simulazione negli scenari di cambiamento dell'habitat per il paesaggio della Sabina. I cerchi rappresentano le popolazioni con un diametro proporzionale alla carrying capacity. Le linee che uniscono le popolazioni indicano dispersione tra le due popolazioni.

Mappa delle metapopolazioni con la perdita del 25% di habitat per il paesaggio della Sabina

Mappa delle metapopolazioni con la perdita del 50% di habitat per il paesaggio della Sabina

Mappa delle metapopolazioni con la frammentazione del 25% di habitat per il paesaggio della Sabina

Mappa delle metapopolazioni con la frammentazione del 50% di habitat per il paesaggio della Sabina

APPENDICE T

Valori totali di habitat suitability (Total HS) per ogni patch e valori di carrying capacity (K) e initial abundance (Init. abund.) patch-specifici per il paesaggio della Sabina negli scenari di cambiamento dell'habitat. Alla fine delle tabelle sono riportati i valori totali di questi parametri, relativi a tutto il paesaggio.

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	538	4	3	32	4035	34	20
2	369	3	2	33	1646	15	9
3	1106	10	6	34	280	2	1
4	1405	13	8	35	1108	10	6
5	1087	10	6	36	357	3	2
6	628	6	4	37	1437	13	8
7	6173	52	31	38	1440	13	8
8	8316	68	40	39	470	5	3
9	987	9	6	40	14714	122	71
10	640	6	4	41	1198	10	6
11	669	6	4	42	1644	15	9
12	824	7	4	43	9469	79	46
13	45450	374	218	44	577	6	4
14	4862	41	24	45	152	1	1
15	670	6	4	46	1020	9	6
16	446	4	2	47	482	5	3
17	23300	192	112	48	484	5	3
18	524	5	3	49	687	7	4
19	816	8	5	50	1305	12	7
20	230	2	1	51	3032	26	16
21	3984	33	19	52	8589	72	42
22	8279	69	41	53	200	2	1
23	3071	26	16	54	526	5	4
24	756	6	4	55	334	3	2
25	7022	59	34	56	595	6	4
26	3082	27	16	57	833	8	5
27	1847	16	10	58	556	5	4
28	1655	14	8	59	58809	484	282
29	1233	11	7	60	10174	85	50
30	908	8	5	61	210	2	1
31	73453	605	353	SUM:	330696	2764	1628

HS, numerosità (Init. abund.) e carrying capacity (K) nella perdita del 25% di habitat per il paesaggio della Sabina

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	537	4	3	26	2042	18	11
2	8269	68	40	27	633	6	4
3	596	5	3	28	280	2	1
4	908	7	4	29	840	8	5
5	1106	10	6	30	605	6	4
6	1405	13	8	31	116	1	1
7	1087	10	6	32	1440	13	8
8	628	6	4	33	1176	10	6
9	6173	52	31	34	8663	72	43
10	987	9	6	35	1644	15	9
11	669	6	4	36	577	6	4
12	2012	18	11	37	4261	36	21
13	8828	73	42	38	150	1	1
14	328	3	2	39	482	5	3
15	317	3	2	40	484	5	3
16	521	4	3	41	687	7	4
17	1955	16	9	42	1305	12	7
18	916	8	5	43	3032	26	16
19	2235	19	11	44	8589	72	42
20	3071	26	16	45	526	5	4
21	7022	59	34	46	833	8	5
22	3082	27	16	47	556	5	4
23	1655	14	8	48	44408	366	213
24	45686	377	220	49	10174	85	50
25	245	2	1	50	209	2	1
				SUM:	193953	1631	965

HS, numerosità (Init. abund.) e carrying capacity (K) nella perdita del 50% di habitat per il paesaggio della Sabina

HS, numerosità (Init. abund.) e carrying capacity (K) nella frammentazione del 25% di habitat per il paesaggio della Sabina

Patch	Total	К	Init.	Patch	Total	К	Init.
	HS		abund.		HS		abund.
1	538	4	3	64	1038	9	5
2	3436	28	16	65	1233	11	7
3	559	5	3	66	3641	30	17
4	2206	18	11	67	1057	10	6
5	287	2	1	68	771	6	4
6	3308	28	17	69	214	2	1

716411701424211768815122124727118141599153117217511102222173302625151153754742092112628647554753136255376548541412483103607714371381514311781440138161640813579796615317366730188015501381898796812642119218218247053206406483619532168463841147106222739231385713459352366964863015251524504428717221482525262112882542211226457838228916311297885633912432 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
8 15122 124 72 71 1814 15 9 9 153 1 1 72 175 1 1 10 222 2 1 73 3026 25 15 11 537 5 4 74 209 2 1 13 625 5 3 76 548 5 4 14 12483 103 60 77 1437 13 8 15 143 1 1 78 1440 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 19 218 2 1 82 470 5 3 20 640 6 3 84 1147 10 6 22 2739 23 13 </td <td>7</td> <td>164</td> <td>1</td> <td>1</td> <td>70</td> <td>14242</td> <td>117</td> <td>68</td>	7	164	1	1	70	14242	117	68
9 153 1 1 72 175 1 1 10 222 2 1 73 3026 25 15 11 537 5 4 74 209 2 1 12 628 6 4 75 547 5 3 13 625 5 3 76 548 5 3 141 12483 103 60 77 1437 13 8 15 143 1 1 78 1440 13 8 16 16408 135 79 79 661 5 3 19 218 2 1 82 470 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 4	8	15122	124	72	71	1814	15	9
10 222 2 1 73 3026 25 15 11 537 5 4 74 209 2 1 12 628 6 4 75 547 5 3 13 625 5 3 76 548 5 4 14 12483 103 60 77 1437 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 <t< td=""><td>9</td><td>153</td><td>1</td><td>1</td><td>72</td><td>175</td><td>1</td><td>1</td></t<>	9	153	1	1	72	175	1	1
11 537 5 4 74 209 2 1 12 628 6 4 75 547 5 3 13 625 5 3 76 548 5 4 14 12483 103 600 77 1437 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 <td< td=""><td>10</td><td>222</td><td>2</td><td>1</td><td>73</td><td>3026</td><td>25</td><td>15</td></td<>	10	222	2	1	73	3026	25	15
12 628 6 4 75 547 5 3 13 625 5 3 76 548 5 4 14 12483 103 60 77 1437 13 8 15 143 1 1 78 1440 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21	11	537	5	4	74	209	2	1
13 625 5 3 76 548 5 4 14 12483 103 60 77 1437 13 8 15 143 1 1 78 1440 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 25 15 16 29 2381 20	12	628	6	4	75	547	5	3
14 12483 103 60 77 1437 13 8 15 143 1 1 78 1440 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 8 1 1 1 27 308 3 <	13	625	5	3	76	548	5	4
15 143 1 1 78 1440 13 8 16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 29 2381 20	14	12483	103	60	77	1437	13	8
16 16408 135 79 79 661 5 3 17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 263 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 30 451 4	15	143	1	1	78	1440	13	8
17 3667 30 18 80 1550 13 8 18 987 9 6 81 264 2 1 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 1 26 4578 38 22 89 163 1 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11	16	16408	135	79	79	661	5	3
18 987 9 6 81 264 2 1 19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 1 30 451 4 2 93 577 5 3 3 31 1170 </td <td>17</td> <td>3667</td> <td>30</td> <td>18</td> <td>80</td> <td>1550</td> <td>13</td> <td>8</td>	17	3667	30	18	80	1550	13	8
19 218 2 1 82 470 5 3 20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 1 30 451 4 2 93 577 6 4 3 11 13 140 1 1 33 1626 13 8 96 919 </td <td>18</td> <td>987</td> <td>9</td> <td>6</td> <td>81</td> <td>264</td> <td>2</td> <td>1</td>	18	987	9	6	81	264	2	1
20 640 6 4 83 619 5 3 21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 33 1626 13	19	218	2	1	82	470	5	3
21 684 6 3 84 1147 10 6 22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 33 1626 13 8 96 919 8 5 34 4016 33	20	640	6	4	83	619	5	3
22 2739 23 13 85 7134 59 35 23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 88 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43	21	684	6	3	84	1147	10	6
23 669 6 4 86 3015 25 15 24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 <tr<< td=""><td>22</td><td>2739</td><td>23</td><td>13</td><td>85</td><td>7134</td><td>59</td><td>35</td></tr<<>	22	2739	23	13	85	7134	59	35
24 504 4 2 87 1722 14 8 25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4	23	669	6	4	86	3015	25	15
25 2526 21 12 88 2542 21 12 26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167	24	504	4	2	87	1722	14	8
26 4578 38 22 89 163 1 1 27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7	25	2526	21	12	88	2542	21	12
27 308 3 1 90 578 5 3 28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 2 15 40 362	26	4578	38	22	89	163	1	1
28 6788 56 33 91 243 2 1 29 2381 20 11 92 2071 17 10 30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 200 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 366 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3	27	308	3	1	90	578	5	3
292381201192207117103045142935776431117011794122113231331952395201133162613896919853440163319975755335518743259848253364674299749462363720320167971001750414484388957410190185392542110229442515403623210336153018417717510431932429008510538903319435245310636332441959169107200214581685108334324627521109292214733932011118111483858332011118111491478012271112595 <t< td=""><td>28</td><td>6788</td><td>56</td><td>33</td><td>91</td><td>243</td><td>2</td><td>1</td></t<>	28	6788	56	33	91	243	2	1
30 451 4 2 93 577 6 4 31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8	29	2381	20	11	92	2071	17	10
31 1170 11 7 94 122 1 1 32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 20 111 811 1 1 48 3858 33 20 1111 833 8 <t< td=""><td>30</td><td>451</td><td>4</td><td>2</td><td>93</td><td>577</td><td>6</td><td>4</td></t<>	30	451	4	2	93	577	6	4
32 313 3 1 95 2395 20 11 33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 1 45 816	31	1170	11	7	94	122	1	1
33 1626 13 8 96 919 8 5 34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 2 110 803 7 4 48 3858 33 20 111 181 1 1 49 14780 122 71 112 595 6 4 50 199 2 1 113 3490 29	32	313	3	1	95	2395	20	11
34 4016 33 19 97 575 5 3 35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 2 110 803 7 4 48 3858 33 20 111 181 1 1 49 14780 122 71 112 595 6 4 50 199 2 1 113 3490 29 177 51 4640 38 22 114 833 8 <	33	1626	13	8	96	919	8	5
35 5187 43 25 98 482 5 3 36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 2 110 803 7 4 48 3858 33 20 111 181 1 1 49 14780 122 71 112 595 6 4 50 199 2 1 113 3490 29 17 51 4640 38 22 114 833 8 5 52 222 2 1 115 675 6 <td>34</td> <td>4016</td> <td>33</td> <td>19</td> <td>97</td> <td>575</td> <td>5</td> <td>3</td>	34	4016	33	19	97	575	5	3
36 467 4 2 99 7494 62 36 37 20320 167 97 100 17504 144 84 38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3	35	5187	43	25	98	482	5	3
372032016797100175041448438895741019018539254211022944251540362321033615301841771751043193242900851053890331943524531063633244195916910720021458168510833432462752110929221473393201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	36	467	4	2	99	7494	62	36
38 895 7 4 101 901 8 5 39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 20 111 181 1 1 48 3858 33 20 111 181 1 1 49 14780 122 71 112 595 6 4 50 199 2 <	37	20320	167	97	100	17504	144	84
39 254 2 1 102 2944 25 15 40 362 3 2 103 3615 30 18 41 771 7 5 104 319 3 2 42 900 8 5 105 3890 33 19 43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 20 111 181 1 1 48 3858 33 20 111 181 1 1 49 14780 122 71 112 595 6 4 50 199 2 1 113 3490 29 17 51 4640 38	38	895	7	4	101	901	8	5
4036232103361530184177175104319324290085105389033194352453106363324419591691072002145816851083343246275211092922147339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	39	254	2	1	102	2944	25	15
4177175104319324290085105389033194352453106363324419591691072002145816851083343246275211092922147339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	40	362	3	2	103	3615	30	18
4290085105389033194352453106363324419591691072002145816851083343246275211092922147339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	41	771	7	5	104	319	3	2
43 524 5 3 106 363 3 2 44 1959 16 9 107 200 2 1 45 816 8 5 108 334 3 2 46 275 2 1 109 292 2 1 47 339 3 2 110 803 7 4 48 3858 33 20 111 181 1 1 49 14780 122 71 112 595 6 4 50 199 2 1 113 3490 29 17 51 4640 38 22 114 833 8 5 52 222 2 1 115 675 6 3 53 149 1 1 116 2032 17 10	42	900	8	5	105	3890	33	19
4419591691072002145816851083343246275211092922147339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	43	524	5	3	106	363	3	2
45816851083343246275211092922147339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	44	1959	16	9	107	200	2	1
46275211092922147339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	45	816	8	5	108	334	3	2
47339321108037448385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	46	275	2	1	109	292	2	1
48385833201111811149147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	47	339	3	2	110	803	7	4
49147801227111259564501992111334902917514640382211483385522222111567563531491111620321710	48	3858	33	20	111	181	1	1
501992111334902917514640382211483385522222111567563531491111620321710	49	14780	122	71	112	595	6	4
514640382211483385522222111567563531491111620321710	50	199	2	1	113	3490	29	17
522222111567563531491111620321710	51	4640	38	22	114	833	8	5
53 149 1 1 116 2032 17 10	52	222	2	1	115	675	6	3
	53	149	1	1	116	2032	17	10

54	9690	81	47	117	3854	32	18
55	6942	58	34	118	9122	75	44
56	2251	20	12	119	224	2	1
57	764	6	4	120	124	1	1
58	509	4	3	121	4576	38	22
59	752	6	4	122	556	5	4
60	10653	88	51	123	917	8	4
61	1267	11	6	124	13080	108	63
62	1181	11	7	125	1522	13	7
63	2031	18	11	126	210	2	1
				SUM:	323332	2698	1587

HS, numerosità (Init. abund.) e carrying capacity (K) nella frammentazione del 50% di habitat per il paesaggio della Sabina

P	Patch	Total	К	Init.	Patch	Total	К	Init.
		HS		abund.		HS		abund.
	1	538	4	3	60	476	4	2
	2	927	8	4	61	172	1	1
	3	1370	11	7	62	308	3	1
	4	1264	10	6	63	1562	13	8
	5	197	2	1	64	2031	18	11
	6	2020	17	10	65	436	4	3
	7	1379	11	7	66	296	3	2
	8	2834	23	14	67	968	8	5
	9	171	2	1	68	1057	10	6
	10	5588	46	27	69	6156	51	30
	11	1563	14	8	70	291	2	1
	12	427	4	2	71	1006	8	5
	13	1195	10	6	72	501	4	3
	14	628	6	4	73	709	7	4
	15	401	3	2	74	460	4	2
	16	1361	11	7	75	2074	17	10
	17	3875	32	19	76	1437	13	8
	18	479	4	2	77	1440	13	8
	19	987	9	6	78	376	3	2
	20	177	1	1	79	1208	11	6
	21	652	5	3	80	470	5	3
	22	640	6	4	81	1889	16	9
	23	182	1	1	82	653	5	3
	24	1248	10	6	83	6509	54	32
	25	669	6	4	84	2928	24	14
	26	2116	17	10	85	143	1	1
	27	1247	10	6	86	340	3	2
	28	637	5	3	87	2074	17	10

29	2045	17	10	88	1476	12	7
30	122	1	1	89	577	6	4
31	681	6	3	90	1451	12	7
32	1677	14	8	91	5786	48	28
33	388	3	2	92	320	3	2
34	952	9	6	93	482	5	3
35	1384	11	7	94	641	5	3
36	847	7	4	95	2223	18	11
37	581	5	3	96	2417	21	13
38	171	1	1	97	2528	21	13
39	291	2	1	98	3267	28	16
40	12476	103	60	99	574	5	3
41	701	6	3	100	200	2	1
42	329	3	2	101	1350	11	6
43	900	8	5	102	334	3	2
44	615	5	3	103	553	5	3
45	524	5	3	104	1109	9	5
46	505	4	2	105	595	6	4
47	816	8	5	106	235	2	1
48	1490	12	7	107	2444	20	12
49	312	3	2	108	4381	36	21
50	8864	73	43	109	2924	24	14
51	2007	17	10	110	3106	26	15
52	3858	33	20	111	833	8	5
53	169	1	1	112	466	4	2
54	2277	19	11	113	1611	14	8
55	524	4	3	114	654	5	3
56	6826	57	33	115	3570	29	17
57	3953	33	19	116	556	5	4
58	1004	9	6	117	1246	10	6
59	757	6	4	118	209	2	1
				SUM:	178905	1500	894
APPENDICE U

Indici geometrici dei patch che compongono il paesaggio della Sabina negli scenari di cambiamento dell'habitat: area dei patch (in km²), area dei patch espressa in percentuale rispetto l'estensione di tutti gli altri patch presenti nel paesaggio (Area as % of patches) e rispetto l'estensione totale del paesaggio (Area as % of landsc.), perimetro dei patch (in km; Edge) e rapporto tra il perimetro e l'area di ciascun patch (indice di forma dei patch; Edge:A). Alla fine delle tabelle sono riportati i valori medi delle aree, dei perimetri e dei rapporti tra i perimetri e le aree dei patch che compongono il paesaggio.

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,05	0,16%	0,02%	1,8	33,77	32	0,43	1,25%	0,17%	10,2	23,85
2	0,04	0,11%	0,01%	1,0	28,11	33	0,19	0,56%	0,08%	7,7	40,59
3	0,14	0,40%	0,05%	3,1	22,48	34	0,03	0,08%	0,01%	1,2	42,36
4	0,17	0,49%	0,07%	4,0	23,80	35	0,14	0,40%	0,05%	5,0	36,51
5	0,13	0,39%	0,05%	2,9	21,44	36	0,04	0,11%	0,01%	1,8	46,56
6	0,09	0,25%	0,03%	3,4	39,36	37	0,17	0,50%	0,07%	8,1	47,88
7	0,64	1,88%	0,25%	14,5	22,53	38	0,17	0,50%	0,07%	8,2	48,47
8	0,83	2,44%	0,33%	17,3	20,77	39	0,07	0,20%	0,03%	1,7	24,39
9	0,12	0,36%	0,05%	3,0	24,03	40	1,50	4,38%	0,59%	46,1	30,83
10	0,09	0,26%	0,03%	2,3	26,56	41	0,12	0,36%	0,05%	2,4	19,70
11	0,09	0,27%	0,04%	3,9	43,25	42	0,19	0,56%	0,08%	7,7	40,29
12	0,08	0,24%	0,03%	2,0	24,00	43	0,96	2,82%	0,38%	27,0	28,04
13	4,55	13,33%	1,79%	60,3	13,25	44	0,08	0,24%	0,03%	3,7	46,00
14	0,50	1,46%	0,20%	14,1	28,24	45	0,02	0,05%	0,01%	0,9	56,77
15	0,09	0,27%	0,04%	2,7	30,04	46	0,13	0,37%	0,05%	4,6	35,76
16	0,05	0,13%	0,02%	1,3	28,88	47	0,07	0,21%	0,03%	2,8	39,44
17	2,33	6,83%	0,92%	35,0	14,98	48	0,07	0,21%	0,03%	3,4	47,06
18	0,08	0,22%	0,03%	2,6	34,66	49	0,09	0,27%	0,04%	4,3	46,07
19	0,11	0,31%	0,04%	3,5	33,05	50	0,16	0,46%	0,06%	4,1	26,34
20	0,02	0,07%	0,01%	1,3	56,17	51	0,33	0,96%	0,13%	8,6	26,17
21	0,41	1,19%	0,16%	11,0	26,92	52	0,88	2,59%	0,35%	25,8	29,17
22	0,85	2,50%	0,34%	20,7	24,27	53	0,03	0,08%	0,01%	2,2	75,26
23	0,33	0,98%	0,13%	4,1	12,18	54	0,08	0,22%	0,03%	3,4	44,36
24	0,08	0,23%	0,03%	3,9	50,13	55	0,05	0,14%	0,02%	2,0	42,08
25	0,72	2,11%	0,28%	8,5	11,83	56	0,08	0,24%	0,03%	3,8	45,38
26	0,33	0,98%	0,13%	5,3	15,96	57	0,11	0,32%	0,04%	4,3	40,19
27	0,21	0,62%	0,08%	12,7	60,31	58	0,08	0,23%	0,03%	2,3	29,55
28	0,17	0,50%	0,07%	3,8	22,22	59	5,89	17,26%	2,32%	76,5	12,97
29	0,15	0,44%	0,06%	10,5	70,20	60	1,04	3,05%	0,41%	38,8	37,20
30	0,12	0,34%	0,05%	3,8	33,19	61	0,02	0,06%	0,01%	0,9	42,86
31	7,37	21,57%	2,90%	79,9	10,84	Media:	0,56		13,28%	10,9	19,44

Indici geometrici dei patch nella perdita del 25% di habitat per il paesaggio della Sabina

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,05	0,27%	0,02%	1,8	33,77	26	0,23	1,14%	0,09%	7,3	31,58
2	0,83	4,10%	0,33%	11,4	13,74	27	0,09	0,43%	0,03%	6,4	73,39
3	0,06	0,30%	0,02%	1,4	23,75	28	0,03	0,14%	0,01%	1,2	42,36
4	0,09	0,45%	0,04%	3,2	35,57	29	0,11	0,54%	0,04%	3,9	35,60
5	0,14	0,67%	0,05%	3,1	22,48	30	0,08	0,40%	0,03%	3,9	47,96
6	0,17	0,82%	0,07%	4,0	23,80	31	0,02	0,08%	0,01%	1,2	76,13
7	0,13	0,66%	0,05%	2,9	21,44	32	0,17	0,84%	0,07%	8,2	48,47
8	0,09	0,43%	0,03%	3,4	39,36	33	0,12	0,60%	0,05%	2,4	19,70
9	0,64	3,18%	0,25%	14,5	22,53	34	0,89	4,41%	0,35%	31,4	35,24
10	0,12	0,61%	0,05%	3,0	24,03	35	0,19	0,94%	0,08%	7,7	40,29
11	0,09	0,45%	0,04%	3,9	43,25	36	0,08	0,40%	0,03%	3,7	46,00
12	0,22	1,11%	0,09%	5,8	25,74	37	0,44	2,18%	0,17%	11,7	26,42
13	0,89	4,38%	0,35%	16,1	18,22	38	0,02	0,08%	0,01%	0,9	56,77
14	0,04	0,18%	0,01%	1,2	32,33	39	0,07	0,35%	0,03%	2,8	39,44
15	0,03	0,16%	0,01%	1,6	51,57	40	0,07	0,35%	0,03%	3,4	47,06
16	0,05	0,26%	0,02%	1,7	32,89	41	0,09	0,46%	0,04%	4,3	46,07
17	0,20	0,97%	0,08%	3,2	16,22	42	0,16	0,77%	0,06%	4,1	26,34
18	0,10	0,49%	0,04%	2,6	26,01	43	0,33	1,63%	0,13%	8,6	26,17
19	0,24	1,20%	0,10%	5,9	24,38	44	0,88	4,37%	0,35%	25,8	29,17
20	0,33	1,65%	0,13%	4,1	12,18	45	0,08	0,38%	0,03%	3,4	44,36
21	0,72	3,57%	0,28%	8,5	11,83	46	0,11	0,53%	0,04%	4,3	40,19
22	0,33	1,66%	0,13%	5,3	15,96	47	0,08	0,39%	0,03%	2,3	29,55
23	0,17	0,84%	0,07%	3,8	22,22	48	4,46	22,06%	1,76%	50,9	11,41
24	4,59	22,71%	1,81%	41,3	8,99	49	1,04	5,15%	0,41%	38,8	37,20
25	0,02	0,12%	0,01%	1,4	56,10	50	0,02	0,10%	0,01%	0,9	42,86
						Media:	0,40		7,67%	7,9	19,52

Indici geometrici dei patch nella perdita del 50% di habitat per il paesaggio della Sabina

Indici geometrici dei patch nella frammentazione del 25% di habitat per il paesaggio della Sabina

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,054	0,16%	0,02%	1,8	33,77	64	0,111	0,33%	0,04%	2,6	23,47
2	0,344	1,03%	0,14%	7,5	21,74	65	0,149	0,45%	0,06%	10,5	70,20
3	0,056	0,17%	0,02%	1,6	29,29	66	0,366	1,10%	0,14%	5,0	13,67
4	0,221	0,66%	0,09%	6,2	28,25	67	0,131	0,39%	0,05%	5,0	37,86
5	0,029	0,09%	0,01%	1,3	45,99	68	0,077	0,23%	0,03%	2,2	28,42
6	0,353	1,06%	0,14%	8,2	23,32	69	0,025	0,08%	0,01%	0,8	33,07
7	0,016	0,05%	0,01%	0,8	50,00	70	1,430	4,29%	0,56%	23,0	16,07

8	1,514	4,55%	0,60%	18,7	12,32	71	0,192	0,58%	0,08%	4,8	25,21
9	0,015	0,05%	0,01%	0,7	47,06	72	0,019	0,06%	0,01%	1,6	86,49
10	0,024	0,07%	0,01%	1,0	40,51	73	0,308	0,92%	0,12%	11,6	37,59
11	0,077	0,23%	0,03%	1,5	19,74	74	0,022	0,07%	0,01%	1,0	43,95
12	0,087	0,26%	0,03%	3,4	39,36	75	0,058	0,17%	0,02%	1,6	28,32
13	0,063	0,19%	0,02%	2,1	33,23	76	0,078	0,24%	0,03%	3,8	48,21
14	1,250	3,75%	0,49%	15,2	12,19	77	0,170	0,51%	0,07%	8,1	47,88
15	0,015	0,05%	0,01%	0,9	56,21	78	0,170	0,51%	0,07%	8,2	48,47
16	1.643	, 4.93%	0.65%	22.4	13.62	79	0.067	, 0.20%	0.03%	2.6	38.69
17	0.367	1.10%	0.14%	9.6	26.26	80	0.164	, 0.49%	0.06%	6.1	36.95
18	0.124	0.37%	0.05%	3.0	24.03	81	0.028	0.08%	0.01%	1.5	52.33
19	0.022	0.07%	0.01%	1.4	63.30	82	0.070	0.21%	0.03%	1.7	24.39
20	0.088	0.26%	0.03%	2.3	26.56	83	0.063	0.19%	0.02%	_,. 1.4	22.89
_== 21	0.069	0.21%	0.03%	<u>-,</u> =	38 25	84	0 116	0 35%	0.05%	24	20.48
22	0 274	0.82%	0.11%	<u>-,</u> ,,	25 60	85	0 725	2 18%	0.29%	_,. 19 3	26.62
22	0,2,4	0,02%	0.04%	7,0 2 Q	43 25	86	0 306	0.92%	0.12%	12.0	20,02
23	0.051	0,2778	0,04%	1.8	36.04	87	0,500	0,52%	0,12%	65	37.48
24	0,051	0,13%	0,02%	87	33.84	88	0.258	0,32%	0,0770	7.0	27 10
25	0,250	1 38%	0.18%	12 /	27.06	80	0,230	0,05%	0,10%	0.7	11 85
20	0,430	0.09%	0,10%	10	30.77	90	0,017	0,05%	0.02%	2.0	34 47
27	0,001	2 0/%	0.27%	11.6	17.01	01	0,030	0,10%	0,0270	2,0 1 /	18 65
20	0,080	2,04%	0,27%	11,0	19.71	02	0,030	0,09%	0,01%	7.6	36.03
20	0,230	0,7270	0,03%	4,J	20.02	02	0,210	0,0570	0,00%	27	46.00
30 21	0,040	0,14%	0,02%	20	20,00	93	0,001	0,24%	0,03%	0.7	40,00 56.45
27	0,143	0,43%	0,00%	3,9 1 0	27,03	94	0,012	0,04%	0,00%	2.8	15 76
32	0,031	0,05%	0,01%	3.0	22.82	96	0,240	0,7270	0,05%	3,0 4.6	10.82
37	0,103	1 21%	0,00%	3,9 7 0	17 26	90	0,112	0,34%	0,04%	4,0 7 2	20.45
25	0,403	1,2170	0,10%	10.2	10.01	97	0,050	0,1070	0,02%	2,5	20 11
36	0,313	0 1/1%	0,20%	1 2	28.21	00	0,071	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,0570	17.6	22 15
27	2 02/	6 11%	0,0270	26.1	17 72	100	1 752	5 26%	0,50%	25.2	1/ /2
38	0 001	0,1170	0,00%	<i>J</i> 1	11,75	100	0 115	0.35%	0,05%	23,5	23 78
30	0,001	0,2770	0,04%	+, 1 1 1	44,50 /11 25	101	0,113	0,35%	0,05%	2,7 8.2	25,70
40	0,020	0,0870	0,01%	15	41,23 /11 21	102	0,321	1 1 2%	0,15%	9,2	23,51
40 //1	0,050	0,1170	0.01%	3.0	20 30	103	0,374	0 10%	0,13%	1 1	25,05
41 12	0,102	0,3170	0.05%		36.81	104	0,052	1 21%	0.16%	1/1 8	36.92
42	0,115	0,33%	0,03%	-, <u>-</u> 2.6	34 66	105	0,402	0.11%	0,10%	1 4	37 50
43	0,070	0,29%	0,05%	2,0	16 73	100	0,037	0,11%	0,01%	1, 1 2 2	75.26
45	0,100	0,35%	0.00%	3,5	33.05	107	0.023	0,05%	0.02%	2,2	42.08
45	0,107	0,5270	0.01%	15	52 33	100	0,040	0,1470	0,02%	2,0 1 /	19 32
40	0,020	0,0070	0,01%	15	12,55	105	0,023	0,05%	0,01%	1,4 2 0	24 70
47	0,034	1 24%	0,01%	1,J Q 2	43,73 20.05	110	0,085	0,25%	0,03%	2,0	10 72
40 10	0,412 1 /12/	т,2470 Д Л6%	0,10%	0,3 26.6	20,03 17 02	117	0,010	0,05%	0,01%	0, <i>3</i> 2 Q	49,72 <u>15</u> 22
49 50	0,020	4,40%	0,58%	20,0	55 /5	112	0,005	1 00%	0,0376	3,0 12 E	45,50
50	0,020	1/11%	0,01%	12 2	29,45 28 21	117	0,335	1,00%	0,14/0	,,, 7 2	دە, <i>د</i> ې ۸۵ ۱۵
57	0,470	1,41% 0 07%	0,10%	,5 10	20,34 ∕11 /1	11 ⁴	0,100	0,32%	0,04%	4,3 7 0	40,19
52	0,025		0,01%	1 1	+⊥,+⊥ 71 ⊑⊃	115	0,070	0,21%	0,03%	2,0 0.0	40,29 17 70
55	0,013	2 090/	0,01%	1,1 72 /	71,32 72 E1	117	0,203	1 16%	0,00%	0,0 6 E	42,20 16 QE
54	0,993	۷,90%	0,39%	23,4	23,34	11/	0,380	1,10%	0,15%	0,5	10,95

55	0,703	2,11%	0,28%	19,4	27,59	118	0,914	2,74%	0,36%	17,7	19,39
56	0,251	0,75%	0,10%	4,0	15,75	119	0,022	0,07%	0,01%	1,0	43,75
57	0,077	0,23%	0,03%	3,9	50,13	120	0,012	0,04%	0,00%	0,7	58,06
58	0,054	0,16%	0,02%	2,2	41,25	121	0,458	1,38%	0,18%	6,1	13,31
59	0,080	0,24%	0,03%	1,8	22,91	122	0,079	0,24%	0,03%	2,3	29,55
60	1,070	3,21%	0,42%	14,6	13,68	123	0,092	0,28%	0,04%	2,6	28,32
61	0,135	0,41%	0,05%	3,7	27,07	124	1,310	3,93%	0,52%	21,9	16,71
62	0,140	0,42%	0,06%	2,5	17,87	125	0,157	0,47%	0,06%	6,7	42,91
63	0,229	0,69%	0,09%	14,5	63,03	126	0,021	0,06%	0,01%	0,9	42,86
						Media:	0,264		13,28%	6,1	22,94
						•					

Indici geometrici dei patch nella frammentazione del 50% di habitat per il paesaggio della Sabina

Patch	Area	Area as	% of:	Edge	Edge:A	Patch	Area	Area as	% of:	Edge	Edge:A
	(km²)	patches	landsc.	(km)	(1/km)		(km²)	patches	landsc.	(km)	(1/km)
1	0,054	0,29%	0,02%	1,82	33,77	60	0,048	0,26%	0,02%	2,12	44,07
2	0,093	0,50%	0,04%	2,70	29,06	61	0,017	0,09%	0,01%	0,62	35,63
3	0,137	0,73%	0,05%	2,50	18,20	62	0,031	0,17%	0,01%	1,12	36,01
4	0,127	0,68%	0,05%	2,14	16,89	63	0,158	0,84%	0,06%	2,84	18,00
5	0,020	0,11%	0,01%	1,28	64,65	64	0,229	1,23%	0,09%	14,46	63,03
6	0,203	1,08%	0,08%	5,48	27,06	65	0,062	0,33%	0,02%	1,70	27,33
7	0,138	0,74%	0,05%	3,36	24,30	66	0,037	0,20%	0,01%	2,24	60,54
8	0,284	1,52%	0,11%	5,40	19,01	67	0,098	0,52%	0,04%	1,94	19,84
9	0,020	0,11%	0,01%	0,84	42,64	68	0,131	0,70%	0,05%	4,96	37,86
10	0,560	2,99%	0,22%	7,72	13,78	69	0,622	3,32%	0,24%	10,72	17,24
11	0,180	0,96%	0,07%	4,74	26,36	70	0,029	0,16%	0,01%	1,30	44,22
12	0,043	0,23%	0,02%	1,34	31,31	71	0,102	0,54%	0,04%	3,14	30,91
13	0,120	0,64%	0,05%	1,90	15,86	72	0,057	0,31%	0,02%	1,94	33,98
14	0,087	0,46%	0,03%	3,42	39,36	73	0,089	0,47%	0,03%	6,50	73,28
15	0,040	0,21%	0,02%	1,62	40,30	74	0,047	0,25%	0,02%	2,06	43,83
16	0,136	0,73%	0,05%	3,34	24,49	75	0,212	1,13%	0,08%	8,02	37,87
17	0,389	2,08%	0,15%	8,04	20,69	76	0,170	0,91%	0,07%	8,12	47,88
18	0,048	0,26%	0,02%	1,58	32,92	77	0,170	0,91%	0,07%	8,24	48,47
19	0,124	0,66%	0,05%	2,98	24,03	78	0,038	0,21%	0,02%	2,08	54,17
20	0,018	0,09%	0,01%	0,88	49,72	79	0,138	0,74%	0,05%	5,34	38,81
21	0,065	0,35%	0,03%	1,38	21,10	80	0,070	0,37%	0,03%	1,70	24,39
22	0,088	0,47%	0,03%	2,34	26,56	81	0,193	1,03%	0,08%	6,98	36,18
23	0,018	0,10%	0,01%	0,90	49,45	82	0,067	0,36%	0,03%	1,90	28,32
24	0,125	0,67%	0,05%	3,38	27,02	83	0,665	3,55%	0,26%	17,00	25,58
25	0,091	0,49%	0,04%	3,94	43,25	84	0,301	1,61%	0,12%	6,30	20,95
26	0,212	1,13%	0,08%	3,24	15,27	85	0,015	0,08%	0,01%	0,68	46,26
27	0,128	0,68%	0,05%	4,22	33,10	86	0,035	0,19%	0,01%	1,78	51,00
28	0,064	0,34%	0,03%	2,74	42,88	87	0,213	1,14%	0,08%	6,24	29,30
29	0,205	1,10%	0,08%	5,80	28,29	88	0,152	0,81%	0,06%	5,70	37,60
30	0,012	0,07%	0,00%	0,68	55,74	89	0,081	0,43%	0,03%	3,74	46,00

31	0,068	0,36%	0,03%	2,12	31,04	90	0,146	0,78%	0,06%	2,48	17,04
32	0,168	0,90%	0,07%	3,68	21,89	91	0,580	3,10%	0,23%	6,98	12,03
33	0,040	0,21%	0,02%	2,06	51,89	92	0,033	0,18%	0,01%	1,26	38,30
34	0,120	0,64%	0,05%	3,08	25,58	93	0,071	0,38%	0,03%	2,80	39,44
35	0,140	0,75%	0,06%	3,54	25,32	94	0,066	0,35%	0,03%	3,04	46,20
36	0,085	0,45%	0,03%	2,18	25,68	95	0,223	1,19%	0,09%	6,60	29,61
37	0,058	0,31%	0,02%	1,42	24,40	96	0,268	1,43%	0,11%	7,02	26,19
38	0,017	0,09%	0,01%	1,10	64,33	97	0,264	1,41%	0,10%	7,80	29,56
39	0,029	0,16%	0,01%	1,44	49,32	98	0,341	1,82%	0,13%	13,74	40,28
40	1,251	6,68%	0,49%	20,84	16,66	99	0,058	0,31%	0,02%	1,48	25,74
41	0,072	0,38%	0,03%	3,34	46,58	100	0,029	0,15%	0,01%	2,16	75,26
42	0,033	0,18%	0,01%	1,30	39,39	101	0,135	0,72%	0,05%	3,10	22,91
43	0,115	0,62%	0,05%	4,24	36,81	102	0,048	0,26%	0,02%	2,02	42,08
44	0,062	0,33%	0,02%	1,96	31,77	103	0,057	0,31%	0,02%	1,58	27,57
45	0,076	0,40%	0,03%	2,62	34,66	104	0,111	0,59%	0,04%	3,58	32,19
46	0,052	0,28%	0,02%	2,04	39,53	105	0,083	0,45%	0,03%	3,78	45,38
47	0,107	0,57%	0,04%	3,52	33,05	106	0,024	0,13%	0,01%	1,30	55 <i>,</i> 08
48	0,149	0,80%	0,06%	2,86	19,14	107	0,245	1,31%	0,10%	4,40	17,96
49	0,032	0,17%	0,01%	1,66	52,04	108	0,439	2,35%	0,17%	7,16	16,30
50	0,896	4,79%	0,35%	15,72	17,55	109	0,294	1,57%	0,12%	7,52	25,58
51	0,206	1,10%	0,08%	5,38	26,08	110	0,322	1,72%	0,13%	11,88	36,94
52	0,412	2,20%	0,16%	8,26	20,05	111	0,108	0,58%	0,04%	4,34	40,19
53	0,017	0,09%	0,01%	1,10	64,33	112	0,048	0,26%	0,02%	1,86	38,59
54	0,233	1,24%	0,09%	6,98	29,98	113	0,167	0,89%	0,07%	6,82	40,89
55	0,053	0,28%	0,02%	2,58	48,77	114	0,066	0,35%	0,03%	1,32	20,12
56	0,702	3,75%	0,28%	15,36	21,89	115	0,358	1,91%	0,14%	4,98	13,91
57	0,404	2,16%	0,16%	10,06	24,89	116	0,079	0,42%	0,03%	2,34	29,55
58	0,126	0,67%	0,05%	3,16	25,14	117	0,129	0,69%	0,05%	6,32	48,99
59	0,077	0,41%	0,03%	3,88	50,13	118	0,021	0,11%	0,01%	0,90	42,86
						Media:	0,159		7,67%	4,25	26,78

APPENDICE V

Abbondanze della metapopolazione (N) attraverso il tempo (espresso in anni) per il paesaggio della Sabina negli scenari di cambiamento dell'habitat. Le curve indicano le abbondanze medie, gli intervalli mostrano le abbondanze corrispondenti a \pm 1 di deviazione standard e i pallini rossi le abbondanze minime e massime di tutte le repliche. Tutti i valori per ogni intervallo temporale sono elencati sotto i grafici.

Trajectory summary 7000,0∃ 6000,0 5000,0 Abundance 4000,0 3000,0 00 000 2000,0 1000,0 30 10 20 40 50 Time

Abbondanze della metapopolazione nella perdita del 25% di habitat per il paesaggio della Sabina

Tempo			Abbond	anza		Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	1628	1628	1628	1628	1628	27	441	658,9	1353	2047,1	4606
1	1266	1493,2	1713	1932,8	2434	28	408	652,7	1299	1945,3	4116
2	1096	1430,8	1729	2027,2	2421	29	349	674,5	1250	1825,5	4142
3	1129	1366,6	1756	2145,4	3289	30	343	616,1	1244	1871,9	4682
4	1080	1353,2	1788	2222,8	3890	31	371	638,7	1181	1723,3	3684
5	1178	1348,9	1749	2149,1	2964	32	434	584,9	1191	1797,1	3737
6	1167	1294,5	1776	2257,5	3928	33	355	598,1	1164	1729,9	3936
7	1025	1232,8	1739	2245,2	3614	34	384	625,9	1176	1726,1	3528
8	819	1214,3	1665	2115,7	3378	35	467	618,5	1208	1797,5	3782
9	867	1223,3	1637	2050,7	2790	36	390	659,9	1184	1708,1	3347
10	695	1170,6	1650	2129,4	3289	37	348	616,7	1172	1727,3	4113
11	621	1064,6	1600	2135,4	3897	38	366	571,9	1188	1804,1	4887
12	708	1074,5	1610	2145,5	3773	39	365	611,2	1173	1734,8	4613
13	721	1057,6	1496	1934,4	3051	40	309	600,2	1189	1777,8	4010
14	618	1062,4	1494	1925,6	2872	41	282	456,7	1210	1963,3	6351
15	570	987,8	1483	1978,2	3421	42	275	547,9	1190	1832,1	4779
16	537	1005.1	1470	1934.9	2651	43	252	570.1	1187	1803.9	4442

17	463	942,7	1495	2047,3	3415	44	233	572,1	1185	1797,9	3796
18	450	893,4	1471	2048,6	3542	45	246	651,2	1128	1604,8	2530
19	478	819	1438	2057	3587	46	282	637,1	1090	1542,9	2576
20	491	817,6	1426	2034,4	4083	47	356	624,7	1072	1519,3	2535
21	480	820,2	1402	1983,8	3548	48	351	644	1066	1488	2594
22	455	802,2	1351	1899,8	3595	49	358	589,3	1066	1542,7	2860
23	501	808,2	1365	1921,8	3509	50	352	587,6	1046	1504,4	2916
24	388	792,8	1332	1871,2	3209						
25	372	789,4	1328	1866,6	3163	Pe	rcentili de	ll'abbond	anza meo	dia totale f	finale
26	422	767,2	1309	1850,8	3537		5th	25th	50th	75th	95th
						50	478,4	715	945	1263,5	1885,2

Abbondanze della metapopolazione nella perdita del 50% di habitat per il paesaggio della Sabina

Tempo			Abbond	anza		Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	965	965	965	965	965	27	242	403,3	700,5	997,7	1864
1	768	877,8	1024	1170,2	1644	28	251	370,8	708,8	1046,8	2326
2	700	874	1068	1262	1816	29	265	391,2	666,6	942	1747
3	653	827,5	1079	1330,5	1983	30	264	342,8	662,1	981,4	2361
4	599	770,2	1106	1441,8	2238	31	208	367,6	644,3	921	1538
5	638	700,1	1073	1445,9	2655	32	286	373,1	648,5	923,9	1541
6	518	654,4	1054	1453,6	3332	33	253	371,8	642,9	914	1636
7	440	668,4	1022	1375,6	2330	34	201	344,1	631,3	918,5	1792
8	468	657,3	993,7	1330,1	2266	35	200	353,6	642,8	932	1782
9	477	650,1	963	1275,9	2230	36	203	317,8	639	960,2	1938
10	505	648,5	953,7	1258,9	2305	37	178	290,2	628,9	967,6	2614
11	388	635,6	923,2	1210,8	1738	38	150	283,3	606,3	929,3	2286
12	337	530,1	909,6	1289,1	2720	39	140	319,5	589,2	858,9	1618

13	363	565,8	880,6	1195,4	2091	40	135	307,8	598,7	889,6	1831
14	399	576,9	839,1	1101,3	1636	41	111	270,3	601,3	932,3	2567
15	355	531,1	833,3	1135,5	1918	42	116	285,7	584,7	883,7	2138
16	300	541,2	823,2	1105,2	1744	43	85	293,7	582,7	871,7	2008
17	249	523,3	818	1112,7	1766	44	74	297,9	549	800,1	1276
18	288	526,2	806,9	1087,6	1619	45	58	300,8	536,6	772,4	1260
19	315	518,6	793,3	1068	1589	46	107	275,6	529,9	784,2	1568
20	292	486,9	789,7	1092,5	2099	47	133	285,7	525,2	764,7	1220
21	278	476,8	786,1	1095,4	2046	48	128	294,4	524,5	754,6	1136
22	294	468,9	774,8	1080,7	1647	49	119	264,9	528,1	791,3	1780
23	270	420,6	772,4	1124,2	2245	50	135	244,4	541,2	838	1825
24	249	460,7	760,8	1060,9	1753						
25	299	433,6	737,3	1041	2293	Pe	rcentili del	ll'abbond	anza meo	lia totale f	finale
26	267	422,3	696,5	970,7	2156		5th	25th	50th	75th	95th
						50	208,85	333,5	471,5	694,25	1064,7

Abbondanze della metapopolazione nella frammentazione del 25% di habitat per il paesaggio della Sabina

Tempo			Abbond	anza		Tempo	Abbondanza				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	1587	1587	1587	1587	1587	27	587	933,1	1235	1536,9	2128
1	1380	1525,9	1635	1744,1	1917	28	605	918,6	1196	1473,4	1851
2	1457	1538,2	1679	1819,8	2102	29	627	925,8	1201	1476,2	1825
3	1216	1506,8	1686	1865,2	2131	30	660	878,5	1184	1489,5	2535
4	1269	1453,9	1662	1870,1	2198	31	615	873,1	1156	1438,9	2178
5	1203	1454,4	1678	1901,6	2255	32	648	864,5	1126	1387,5	1890
6	1099	1426,1	1671	1915,9	2485	33	714	861,2	1105	1348,8	1725
7	955	1388,3	1651	1913,7	2330	34	663	852,9	1077	1301,1	1720

8	897	1359,7	1605	1850,3	2199	35	665	854,1	1086	1317,9	1680
9	939	1330,2	1573	1815,8	2253	36	637	848,8	1089	1329,2	1858
10	948	1303,6	1554	1804,4	2262	37	618	821,6	1088	1354,4	1996
11	816	1271,1	1535	1798,9	2309	38	605	813,7	1080	1346,3	2045
12	949	1262,6	1528	1793,4	2184	39	544	815,9	1083	1350,1	1881
13	903	1233,5	1499	1764,5	2349	40	573	823,4	1087	1350,6	1732
14	863	1198,3	1455	1711,7	2064	41	505	805,2	1074	1342,8	1805
15	880	1162,5	1422	1681,5	2042	42	498	791,9	1074	1356,1	2244
16	845	1145,6	1424	1702,4	2168	43	467	777,3	1050	1322,7	1984
17	735	1110,2	1395	1679,8	2036	44	532	788	1077	1366	1856
18	810	1109,9	1372	1634,1	2021	45	483	774,9	1065	1355,1	1894
19	864	1099,1	1364	1628,9	2072	46	477	769,8	1046	1322,2	2071
20	727	1082,4	1335	1587,6	1959	47	471	773,9	1044	1314,1	1711
21	749	1041	1323	1605	2375	48	486	758	1034	1310	1648
22	705	1031,8	1296	1560,2	1935	49	440	734,8	1031	1327,2	1782
23	671	1016,3	1288	1559,7	1962	50	480	714,7	1026	1337,3	2054
24	696	1008,3	1273	1537,7	1992						
25	694	977,2	1260	1542,8	2047	Per	rcentili de	ll'abbond	anza med	ia totale f	inale
26	672	960,1	1256	1551,9	2237		5th	25th	50th	75th	95th
						50	593,5	791,5	1019,5	1204,8	1617,1

Abbondanze della metapopolazione nella frammentazione del 50% di habitat per il paesaggio della Sabina

Tempo			Abbond	anza		Tempo			Abbond	anza	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	894	894	894	894	894	27	258	370,5	511	651,5	942
1	806	864,61	927,1	989,59	1090	28	232	362,7	495,5	628,3	987
2	705	865,47	952	1038,5	1225	29	231	353,8	490,9	628	1154
3	745	841,7	949,3	1056,9	1336	30	237	353,3	473,4	593,5	963
4	729	821,4	947,9	1074,4	1533	31	212	339,6	458,9	578,2	1007
5	675	797,5	924,3	1051,1	1327	32	195	331,5	444,3	557,1	820
6	600	761,6	896	1030,4	1252	33	182	312	438,9	565,8	931
7	529	725,5	858	990,5	1207	34	159	308,9	435,9	562,9	827
8	554	702,8	843,1	983,4	1251	35	154	299,6	423,8	548	825
9	507	689	809,8	930,6	1108	36	170	288,3	412	535,7	792
10	521	665,3	786,6	907,9	1129	37	169	280,9	399,5	518,1	824
11	475	632,7	767,1	901,5	1062	38	164	271,7	395,3	518,9	895
12	426	605,5	748,9	892,3	1238	39	133	265,1	384,4	503,7	839
13	458	593,4	730,1	866,8	1103	40	132	252,8	372	491,2	891
14	407	582,7	716,8	850,9	1068	41	131	222	368	514	1186
15	432	570,5	698,6	826,7	1128	42	116	206,6	359,2	511,8	1379
16	390	538,3	671,5	804,7	1049	43	124	220,1	341,2	462,3	829
17	376	522,5	666,5	810,5	1029	44	113	210,4	338,2	466	798
18	392	501,3	645,5	789,7	1097	45	89	201,9	338	474,1	1018
19	367	483,6	631,3	779	1180	46	81	205,9	318,3	430,7	758
20	338	462	614,8	767,6	1087	47	86	206,7	313,8	420,9	759
21	302	455	597,7	740,4	1049	48	107	197,6	309,2	420,8	780
22	293	434,1	587,2	740,3	1090	49	81	195,4	304,3	413,2	626
23	274	402,4	579,3	756,2	1609	50	75	197,85	300,4	402,95	632
24	255	400,5	557,3	714,1	1174						
25	241	390,4	537,9	685,4	1130	Percentili dell'abbondanza media totale finale					inale
26	267	383,1	525,3	667,5	1136		5th	25th	50th	75th	95th
						50	161,85	227	290	360,75	461,45

APPENDICE W

Numero delle popolazioni presenti attraverso il tempo (espresso in anni) per il paesaggio della Sabina negli scenari di cambiamento dell'habitat. Le curve indicano il numero medio delle popolazioni presenti, gli intervalli mostrano il numero delle popolazioni corrispondenti a \pm 1 di deviazione standard e i pallini rossi il numero delle popolazioni minimo e massimo di tutte le repliche. Tutti i valori per ogni intervallo temporale sono elencati sotto i grafici.

Тетро		Popolaz	ioni occu	pate		Tempo	Popolazioni occupate				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	61	61	61	61	61	26	26	34,7	39,2	43,7	48
1	54	57,1	58,6	60,2	61	27	26	34,2	38,7	43,1	49
2	50	55	56,9	58,7	61	28	25	33,7	38,3	43	49
3	49	52,8	55	57,1	59	29	26	33	37,6	42,1	47
4	47	51	53,3	55,6	58	30	25	32,6	37,2	41,7	46
5	45	49,7	52,1	54,5	56	31	24	32,4	37	41,5	48
6	44	48,4	50,9	53,4	58	32	23	31,7	36,6	41,5	49
7	44	47,1	49,9	52,8	58	33	23	30,9	35,9	41	48
8	42	45,9	49,3	52,7	57	34	22	31	36	40,9	48
9	38	45,2	48,3	51,3	56	35	22	30,6	35,8	41	48
10	38	44,3	47,4	50,5	54	36	23	30,7	35,8	40,9	47
11	36	42,7	46,4	50	56	37	23	30,3	35,4	40,5	48
12	35	41,7	45,4	49,1	53	38	21	29,8	35,3	40,8	48
13	35	41,3	44,9	48,6	55	39	18	29,4	34,8	40,2	46
14	35	40,5	44,3	48,2	55	40	19	29,2	34,6	40	44
15	33	40,1	44,2	48,2	52	41	20	29,2	34,5	39,8	44
16	30	39,6	43,5	47,5	53	42	22	29,2	34,5	39,7	45

17	31	38,9	42,9	46,8	52	43	22	29,4	34,5	39,6	46
18	31	38,5	42,7	46,8	54	44	19	29,2	34,5	39,7	46
19	29	38,2	42,2	46,2	54	45	20	29,3	34,3	39,3	45
20	31	37,9	41,8	45,6	52	46	20	28,7	33,8	39	46
21	30	37,3	41,2	45	52	47	22	28,7	33,5	38,4	46
22	28	37	40,8	44,6	52	48	19	28,4	33,3	38,2	45
23	26	36,5	40,5	44,5	49	49	18	27,9	33,1	38,4	45
24	25	35,8	40,1	44,4	48	50	22	28,1	32,9	37,7	45
25	27	35,4	39,8	44,2	48						

Occupancy della metapopolazione nella perdita del 50% di habitat per il paesaggio della Sabina

Tempo		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	50	50	50	50	50	26	19	23,1	27,1	31,1	40
1	44	46,4	47,7	49	50	27	18	22,5	26,6	30,8	39
2	41	44,1	45,9	47,7	50	28	17	21,9	26	30,2	38
3	37	41,6	43,8	46,1	49	29	18	21,4	25,8	30,2	37
4	37	40,1	42,4	44,7	48	30	15	21	25,4	29,8	37
5	35	38,4	41	43,7	46	31	17	21,1	25,4	29,7	38
6	33	37,2	40	42,9	46	32	14	20,7	25	29,3	38
7	33	36,1	39	42	47	33	15	20,6	24,8	29	37
8	31	35	38,1	41,2	46	34	16	20,4	24,5	28,6	39
9	31	34,4	37,6	40,8	44	35	14	19,8	23,8	27,8	35
10	29	33,5	36,7	39,9	44	36	14	19,5	23,7	27,9	36
11	29	32,6	35,9	39,2	43	37	12	19,4	23,5	27,7	34
12	25	31,2	34,7	38,1	45	38	13	18,9	23,1	27,3	34
13	24	30,7	33,9	37,2	42	39	12	18,2	22,6	27	33
14	24	30,3	33,5	36,7	42	40	12	18	22,3	26,6	33

15	24	29,2	32,6	36	41	41	12	18	22,3	26,5	34
16	22	28,8	32,2	35,5	41	42	11	17,6	21,9	26,3	32
17	19	27,9	31,3	34,7	39	43	11	17,4	21,8	26,1	32
18	21	27,4	30,9	34,5	41	44	10	17	21,3	25,6	33
19	19	26,8	30,3	33,9	40	45	10	16,5	21,1	25,7	34
20	22	26,3	29,8	33,2	40	46	9	16,1	20,9	25,6	33
21	19	25,7	29,4	33,1	40	47	9	15,6	20,4	25,2	33
22	18	24,9	28,8	32,7	40	48	9	15,6	20,4	25,2	34
23	20	24,2	28,1	31,9	38	49	9	15,4	20,1	24,8	34
24	20	23,7	27,6	31,5	38	50	9	15,3	20	24,8	35
25	19	23,2	27,4	31,5	40						

Occupancy della metapopolazione nella frammentazione del 25% di habitat per il paesaggio della Sabina

Тетро		Popolaz	ioni occu	pate		Tempo		Popolaz	ioni occu	pate	
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	126	126	126	126	126	26	58	70,3	78,2	86,1	96
1	109	113,4	116,1	118,8	122	27	58	69	77,1	85,1	96
2	104	107,6	110,9	114,2	119	28	58	67,8	76,1	84,4	96
3	94	103,1	107,2	111,3	116	29	54	67,2	75,7	84,1	94
4	91	99,6	104,4	109,2	118	30	56	66,9	74,9	83	94
5	88	97,4	102	106,7	113	31	54	66,4	74,1	81,7	92
6	86	95,2	100,3	105,3	110	32	52	66	74	82	90
7	82	93,6	98,4	103,2	107	33	57	65,8	73,3	80,7	90
8	86	91,5	96,4	101,4	105	34	54	64,3	72,2	80,2	91
9	82	89,2	94,9	100,6	108	35	57	64,5	72,4	80,4	95
10	79	88,6	93,8	99,1	107	36	58	64	71,4	78,8	90
11	75	87,1	92,6	98	103	37	53	62,2	70,5	78,9	93

12	75	85,5	91,1	96,7	104	38	50	61,1	69,6	78,1	89
13	75	83,9	89,9	95,8	104	39	51	60,4	69,1	77,8	90
14	71	82,7	88,9	95,1	103	40	52	59,8	68,5	77,2	89
15	72	81,2	87,9	94,6	101	41	49	59,2	68	76,9	89
16	71	80,1	87	93,9	101	42	45	58,6	67,4	76,2	89
17	68	78,9	85,8	92,7	99	43	41	57,8	66,7	75,5	88
18	67	78,6	84,9	91,2	99	44	43	57,5	66,5	75,5	89
19	69	77,5	83,6	89,6	97	45	43	57,1	66,3	75,5	88
20	67	76,1	82,4	88,7	99	46	42	56,6	65,9	75,3	88
21	68	75,3	81,7	88	100	47	40	56,2	65,3	74,5	83
22	64	73,8	80,8	87,9	103	48	39	55,3	64,9	74,4	87
23	61	73,4	80,4	87,4	99	49	39	54,7	64,3	73,9	86
24	62	72,5	80,1	87,6	98	50	40	54,4	64,1	73,8	83
25	58	71,2	78,9	86,6	99						

Occupancy della metapopolazione nella frammentazione del 50% di habitat per il paesaggio della Sabina

Tempo		Popolaz	ioni occu	pate		Tempo	Popolazioni occupate				
	Min.	-1 S.D.	Media	+1 S.D.	Max.		Min.	-1 S.D.	Media	+1 S.D.	Max.
0	118	118	118	118	118	26	26	41,5	49,6	57,7	70
1	101	106,2	108,9	111,6	115	27	28	40,4	48,3	56,1	69
2	94	98,7	102,3	106	111	28	29	39,7	47,3	54,9	65
3	85	92,6	96,7	100,8	107	29	30	38,9	46,5	54	65
4	82	88,6	92,6	96,7	100	30	26	37,3	45,2	53,1	65
5	78	84,7	88,9	93,2	96	31	24	36,3	44,3	52,4	62
6	74	81,2	85,7	90,1	98	32	27	35,9	43,4	50,9	59
7	66	77,4	82,6	87,7	96	33	27	35	42,5	50	57
8	64	74,2	79,9	85,6	95	34	26	34,3	41,7	49,1	59

9	62	72	77,3	82,6	90	35	23	33	41	48,9	57
10	61	69,2	74,8	80,4	87	36	20	31,4	39,6	47,8	61
11	60	67,4	72,8	78,2	86	37	22	31	39	47	59
12	54	64,6	70,9	77,2	86	38	20	30,4	38,3	46,1	58
13	53	63,3	69,6	75,9	82	39	18	29,4	37,2	45	57
14	50	61,5	67,8	74,2	85	40	17	28,5	36,4	44,3	56
15	49	59,3	65,4	71,5	78	41	16	27,4	35,5	43,6	55
16	48	57,2	63,8	70,4	83	42	17	26,8	34,8	42,8	55
17	48	55,8	62,2	68,5	79	43	17	26,2	34	41,7	51
18	41	53,4	60,3	67,2	81	44	18	25,4	33,2	41	54
19	41	51,7	58,9	66,1	82	45	17	24,3	32,4	40,4	55
20	39	49,6	56,9	64,2	78	46	14	23,7	31,8	39,9	53
21	35	48	55,7	63,3	73	47	13	23,6	30,8	38	51
22	33	46,1	54,2	62,2	76	48	11	23	30,3	37,6	49
23	29	45	53,1	61,2	72	49	9	22,2	29,7	37,2	53
24	28	44	52	59,9	72	50	8	21,8	29,4	37	51
25	25	42,5	50,5	58,5	72						